تحلیل چندمتغیره کیفیت آب زیرزمینی با استفاده از توابع مفصل ارشمیدسی (مطالعه موردی: دشت شهرکرد)

نویسندگان

1 گروه مهندسی عمران، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران

2 گروه مهندسی عمران، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران , گروه مهندسی آب، دانشگاه شهرکرد، شهرکرد، ایران

3 گروه مهندسی شیمی، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران

4 گروه مهندسی آب، دانشگاه شهرکرد، شهرکرد، ایران

چکیده

تاکنون مطالعات مختلفی در زمینه بررسی و مدلسازی تغییرات کیفی آب انجام شده، اما کمتر به تحلیل چندمتغیره کیفیت آب زیرزمینی پرداخته شده است. در این پژوهش، رویکردی نوین برای تحلیل چندمتغیره پارامترهای کیفی آب زیرزمینی با استفاده از توابع مفصل ارائه گردید. از آنجائی­که داده‌های کیفی آب دارای چولگی بوده و پیش­فرض نرمال بودن توزیع داده‌ها معمولاً برقرار نمی باشد، لذا در این تحقیق، توابع مفصل ارشمیدسی برای ایجاد توزیع چندمتغیره پارامترهای کیفی آب شامل K+، Mg2+ ، Na+، 2+ Ca، Cl-، ، ، SAR، EC، pH، TDS و TH بکار گرفته شد. برای این منظور از داده‌های کیفی آب 24 حلقه چاه مشاهداتی در دشت شهرکرد استفاده گردید. سپس ساختار همبستگی هر جفت پارامتر کیفی مورد بررسی قرار گرفت. پس از تعیین بهترین توزیع تک متغیره برای هر یک از پارامترهای کیفی، برازش ده تابع مفصل مختلف برای ایجاد توزیع چندمتغیره مورد آزمون قرار گرفت. نتایج حاصل از برازش توزیع‌ها نشان داد که تابع توزیع مقادیر حدی تعمیم یافته (GEV) بهترین برازش را بر پارامترهای کیفی مورد مطالعه دارد. همچنین نتایج حاصل از برازش توابع مفصل نشان داد که تابع مفصل جو بهترین برازش را بر داده‌های مشاهداتی دارد و پس از آن، توابع مفصل کلایتون و فارلی- گامبل- مورگن- اشترن در رتبه‌های بعدی قرار دارند. نتایج حاصل از تحلیل همبستگی نشان داد که بالاترین میزان همبستگی بر اساس ضرایب همبستگی پیرسون، راو اسپیرمن و تاو کندال مربوط به جفت پارامترهای (SAR, Na) و (EC, TDS) با ضریب همبستگی بالای 9/0 می‌باشد. نتایج حاصل از مقایسه مفصل تئوری با مفصل تجربی، معیارهای نکوئی برازش برای آن­ها (ریشه میانگین مربعات خطا، ضریب نش ساتکلیف، معیار اطلاعات آکائیکه و بیزین) بترتیب RMSE=0.031,0.036، NSE= -0.0271,-0.0351، AIC=66,65.5 و BIC=-6.4,-6.9 بدست آمد، که نتایج حاصل از این اعداد به نوبه خود حاکی از برتر بودن تابع مفصل جو در تحلیل­های چندمتغیره کیفی آب­های زیرزمینی می­باشد. آگاهی از وضعیت کیفی منابع آب زیرزمینی، از جمله فواید استفاده از روش‌های تحلیل چندمتغیره در مطالعات کیفی آب­های زیرزمینی می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Multivariate analysis of groundwater quality using Archimedean Copula functions (Case study: Shahrekord aquifer)

نویسندگان [English]

  • V. Birjandi 1
  • S. H. Tabatabaei 2
  • R. Mastori 1
  • H. Mazaheri 3
  • R. Mirabbasi Najafabadi 4
1 Dept., of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran
2 Dept., of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran, Dept., of Water Engineering, Shahrekord University, Shahrekord, Iran
3 Dept., of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
4 Dept., of Water Engineering, Shahrekord University, Shahrekord, Iran
چکیده [English]

So far, various studies on the analysis of water quality parameters have been evaluated, but less multivariate analysis of quality parameters has been done. Therefore, in this study, a new approach has been proposed to multivariate analysis of water quality parameters using Copula functions. Since water quality data is skewed and the assumption of normality is not observed in the data distribution, so using the Archimedean Copula functions in this study for quality parameters (Sar, K, Mg, Na, Ca, Cl, Ec, Ph, Tds, So4 and Th, Hco3,) can be overcome by topic. For this purpose, qualitative data of 24 observation wells in Shahrekord plain were used. Then, by Coupling (pairing) the water quality parameters and determining the superior distribution, ten Copula functions were fitted on them. The results of fitting the distributions showed that the GEV (Generalized Extreme Value) distribution function is the best distribution function over the qualitative parameters and also the results of determining the copula functions showed that in the first stage the Copula search function as a function The best Copula was identified over the qualitative parameters, and then the functions of Clayton and Farley Gamble Morgan Stern were next. The results of fitting correlation analysis showed that the highest correlation based on Pearson, Spearman and Kendal correlation coefficients is related to the parameters (Sar, Na) and (Ec, Tds) with a correlation coefficient more than 0.9. so that the results of the criteria goodness of fit for them (Root Mean Square Error (RMSE), Nash Sutcliffe Efficiency coefficient (NSE), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC)) was respectively RMSE = 0.031,0.036, NSE = -0.0271, -0.0351, AIC = 66,65.5 and BIC = -6.4, -6.9 Awareness of qualitative pollution of groundwater resources is one of the benefits of using multivariate analysis methods in groundwater quality studies.

کلیدواژه‌ها [English]

  • Groundwater
  • Archimedean Copula Functions
  • Water Quality
  • Return period
نیرومند، ح و بزرگ­نیا، س. ا (1382) مقدمه‌ای بر سری‌های زمانی، انتشارات دانشگاه فردوسی مشهد، 304 ص.
خانی­تملیه، ذ. رضایی، ح. و میرعباسی نجف­آبادی، ر (1399) کاربرد توابع مفصل تودرتو برای تحلیل فراوانی چهار متغیره خشکسالی­های هواشناسی (مطالعه موردی: غرب ایران نشریه حفاظت منابع آب و خاک، 10(1)، ص 112-93.
گنجعلی­خانی­، م.، نعمت­کرمانی­، م.، رضاپور، م. و رهنما، م. ب (1395) ارزیابی عملکرد تابع مفصل در پهنه‌بندی کیفی آب­های زیرزمینی، مطالعه موردی دشت­های کرمان و راور، نشریه تحقیقات آب و خاک ایران، 47(3)، ص 561-550.
لاله­زاری، ر.، طباطبایی، س. ح.، و یارعلی، ن (1388) بررسی تغییرات ماهانه نیترات در آب زیرزمینی دشت شهرکرد و پهنه­بندی با استفاده از سیستم اطلاعات جغرافیایی. مجله پژوهش‌های آب ایران، 3(4)، ص 17-9.
علیزاده، ا (1391) اصول هیدرولوژی کاربردی، ویرایش پنجم، چاپ سی پنجم، دانشگاه امام رضا (ع)، ص 928.
Aas, K., Czado, C., Frigessi, A., and Bakken, H (2009) Pair-copula constructions of multiple dependence. Insurance: Mathematics and economics, 44 (2): 182-198.
Abdi, A., Hassanzadeh, Y., Talatahari, S., Fakheri-Fard, A., and Mirabbasi, R (2017) Regional bivariate modeling of droughts using L-components and copulas. Stoch. Environ. Res. Risk. Assess, 1199-1210.
Akaike, H (1974) A new look at Statistical Model Identification. IEEE Transactions on Automatic Control, 19: 716- 723.
Atique, F., and Attoh-Okine, N (2018) Copula parameter estimation using Bayesian inference for pipe data analysis. Canadian Journal of Civil Engineering, 45(1): 61-70.
Ayantobo, O. O., Li, Y. and Song, S (2018) Copula-based trivariate drought frequency analysis approach in seven climatic sub-regions of mainland China over 1961–2013.Theoretical and Applied Climatology, 137(3): 2217-2237.
Ayantobo, O. O., Li, Y. and Song, S (2019) Multivariate Drought Frequency Analysis using Four-Variate Symmetric and Asymmetric Archimedean Copula Functions. Water Resources Management, 33: 103–127.
Bárdoss, A. and Hörning, S (2016) Gaussian and non Gaussian inverse modeling of groundwater flow using copulas and random mixing. Water Resources Research, 52(6): 4504-4526.
Bárdossy, A (2006) Copula‐based geostatistical models for groundwater quality parameters. Journal of Water Resources Research, 42(11): 1-12.
Bárdossy, A (2011) Interpolation of groundwater quality parameters with some values below the detection limit. Hydrology and Earth System Sciences, 15(9): 2763-2775.
Bárdossy, A. and Li, J (2008) Geostatistical interpolation using copulas. Water Resources Research, 44(7).
Chai, Y. Xiao, C. Li. M. and Liang, X (2020) Hydrogeochemical Characteristics and Groundwater Quality Evaluation Based on Multivariate Statistical Analysis. Water, 12(10): 2792.
Chen, S., Tang, Z., Wang, J., Wu, J., Yang, C., Kang, W. and Huang, X (2020) Multivariate analysis and geochemical signatures of shallow groundwater in the main urban area of Chongqing, southwestern China. Water, 12(10): 2833.
De Michele, C. and Salvadori, G (2003) A generalized Pareto intensity-duration model of storm rainfall exploiting 2-copulas, Journal of Geophysical Research, 108(D2): 4067.
Fang, Y., Zheng, T., Zheng, X., Peng, H., Wang, H., Xin, J. and Zhang, B (2020) Assessment of the hydrodynamics role for groundwater quality using an integration of GIS, water quality index and multivariate statistical techniques. Journal of Environmental Management, 273, 111185.
Genest, C. and Rivest, L. P (1993) Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association, 88 (423): 1034–1043.
Gräler, B. and Pebesma, E (2011) The pair-copula construction for spatial data: a new approach to model spatial dependency. Procedia Environmental Sciences, 7(1): 206-211.
Joe, H (1997) Multivariate Models and Dependence Concepts. London: Chapman & Hall. 399 pp.
Lalehzari, R. and Tabatabaei, S. H (2020) Discussion of Coupled Groundwater Drought and Water Scarcity Index for Intensively Overdrafted Aquifers by Hamid Sanginabadi, Bahram Saghafian, and Majid Delavar. Journal of Hydrologic Engineering, 25(2): 07019005.
Mirabbasi, R., Fakheri-Fard, A. and Dinpashoh, Y (2012) Bivariate drought frequency analysis using the Copula method. Theoretical and Applied Climatology, 108: 191–206.
Nash, J. E. and Sutcliffe, J. V (1970) River flow forecasting through conceptual models. A discussion of principles, Journal of Hydrology, 10: 282–290.
Nelsen, R. B (2006) An Introduction to Copulas, Springer, New York. 269 pp.
Omidi, M. and Mohammadzadeh, M (2018) Spatial Interpolation Using Copula for non-Gaussian Modeling of Rainfall Data. Journal of The Iranian Statistical Society, 17(2): 165-179.
Requena, A. I., Mediero, L. and Garrote, L (2013) A bivariate return period based on copulas for hydrologic dam design: accounting for reservoir routing in risk estimation. J. Hydrol. Earth Syst. Sci, 17: 3023–3038.
Saghafian, B. and Sanginabadi, H (2020) Multivariate groundwater drought analysis using copulas. Hydrology Research, 51(4): 666-685.
Schwarz, G (1978) Estimating the dimension of a model. The Annals of Statistics, 6(2):461-464
Shiau, J. T (2006) Fitting drought duration and severity with two-dimensional copulas. Water Resources Management, 20: 795–815.
Silva, M. I., Gonçalves, A. M. L., Lopes, W. A., Lima, M. T. V., Costa, C. T. F., Paris, M. and De Paula Filho, F. J (2021) Assessment of groundwater quality in a Brazilian semiarid basin using an integration of GIS, water quality index and multivariate statistical techniques. Journal of Hydrology, 598: 126346.
Sklar, M (1959) Fonctions de repartition an dimensions et leurs marges. Publ. inst. statist. univ. Paris, 8: 229-231.
Wang, F., Wang, Z., Yang, H., Di, D., Zhao, Y., Liang, Q. and Hussain, Z (2020) Comprehensive evaluation of hydrological drought and its relationships with meteorological drought in the Yellow River basin, China. Journal of Hydrology, 584, 12475.