بررسی ویژگی های فیزیکی- مکانیکی سنگ های استفاده شده در ساخت بناهای باستانی استان لرستان با تاکید بر دوام پذیری (مطالعه موردی: پل کشکان)

نویسندگان

1 استادیار گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه لرستان، خرم‌آباد، ایران

2 استادیار گروه تاریخ و باستان‌شناسی، دانشگاه لرستان، خرم‌آباد، ایران

چکیده

هدف از این مطالعه بررسی خصوصیات فیزیکی و مکانیکی سنگ­های آهکی مورد استفاده در ساخت پل تاریخی کشکان (استان لرستان) و ارزیابی رفتار آن­ها در مقابل هوازدگی نمک می­باشد. بر همین اساس، دو نوع از سنگ­آهک­های استفاده شده در ساخت پل کشکان شامل سنگ­آهک آسماری (ASR) و تله­زنگ (TLZ) انتخاب و در آزمایشگاه مورد مطالعه قرار گرفتند. نتایج مطالعات سنگ­شناسی نشان داد که سنگ­آهک آسماری، یک نوع مادستون آهکی و نمونه سنگ­آهک تله­زنگ گرینستون می­باشد. در مرحله اول خصوصیات سنگ­شناسی، فیزیکی و مکانیکی سنگ­های مورد مطالعه تعیین شدند و در ادامه آزمایش تبلور نمک در محلول سولفات سدیم و منیزیم در 30 چرخه بر روی نمونه­های انتخاب شده انجام شد. به­منظور بررسی تأثیر هوازدگی نمک بر روی دوام و پایداری سنگ­های انتخاب شده، در پایان هر 10 چرخه تغییرات ظاهری، سرعت موج و شاخص بار نقطه­ای نمونه­ها ارزیابی و تعیین شد. بر اساس نتایج، مشخص شد که سولفات سدیم تأثیر به مراتب بیش­تری بر روی فرسودگی و تخریب سنگ­های آهکی مورد مطالعه دارد. همچنین، نتایج نشان داد که سنگ­آهک آسماری در پایان 30 چرخه آزمایش تبلور نمک در محلول سولفات سدیم و منیزیم دچار فرسودگی و زوال بیش­تری در مقایسه با سنگ­آهک تله­زنگ شده است. علاوه بر این، مطالعات SEM به منظور بررسی تغییرات ساختاری نمونه­ها ناشی از هوازدگی نمک نیز انجام شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the physico-mechanical characteristics of rocks used in the construction of ancient buildings in Lorestan province with an emphasis on durability (case study: Kashkan Bridge)

نویسندگان [English]

  • Y. Abdi 1
  • M. Sabzi 2
1 Assoc. Prof., Dept. of Geology, Faculty of sciences, Lorestan University, Khoramabad, Iran
2 Assist. Prof., Dept. of History and Archaeology, Lorestan University, Khoramabad, Iran
چکیده [English]

The purpose of this study is to investigate the physical and mechanical properties of limestone used in the construction of the historical bridge of Kashkan (Lorestan province) and to evaluate their behavior against salt weathering. Based on this, two types of limestone used in the construction of Kashkan bridge, including Asmari limestone (ASR) and Talezang (TLZ) were selected and studied in the laboratory. Based on the petrographic analysis results, Asmari stone can be classified as a lime mudstone, while Talezang stone can be classified as a grainstone. In the first stage, the lithological, physical and mechanical characteristics of the studied rocks were determined, and then salt crystallization test was performed in sodium and magnesium sulfate solution in 30 cycles on the selected samples. In order to investigate the effect of salt weathering on the durability and stability of the selected stones, at the end of every 10 cycles, the changes in appearance, P-wave velocity and point load strength of the samples were evaluated. Based on the results, it was found that sodium sulfate has a much greater effect on the decay and degradation of the studied limestones. Also, the results showed that at the end of 30 cycles of salt crystallization test in sodium and magnesium sulfate solution, Asmari limestone has experienced more damage compared to Talezang limestone. In addition to these, SEM studies have been conducted to investigate the structural changes of the samples due to salt weathering.

کلیدواژه‌ها [English]

  • Physico-mchanical properties
  • Limestone
  • Salt weathering
  • Kashkan Bridge
  • Lorestan
Ahmad, P (2001) The bridge and its transformation in Badrban Hasanweh territory. Master's thesis, Tehran University (in persian).
Akin, M., Ozsan, A (2011) Evaluation of the long-term durability of yellow travertine using accelerated weathering tests. Bull Eng Geol Environ, 70: 100-114.
Benavente, D., García del Cura, M. A., Fort, R., Ordóñez, S (2004a) Durability estimation of porous building stones from pore structure and strength. Eng Geol, 74: 113-127. doi.org/10.1016/j.enggeo.2004.03.005.
Benavente, D., García del Cura, M. A., García-Guinea, J., Sánchez-Moral, S., Ordóñez, S (2004b) The role of pore structure in salt crystallization in unsaturated porous stone. J Cryst Growth, 260: 532-544. doi.org/10.1016/j.jcrysgro.2003.09.004.
Cardell, C., Rivas, T., Mosquera, M. J., Birginie, J. M., Moropoulou, A., Prieto, B., Silva, B., Van Grieken, R (2003) Patterns of damage in igneous and sedimentary rocks under conditions simulating sea-salt weathering. Earth Surf Process Landf, 28: 1-14. doi.org/10.1002/esp.408.
Cardenes, V., Mateos, F. J., Fernandez-Lorenzo, S (2014) Analysis of the correlations between freeze-thaw and salt crystallization tests. Environ Earth Sci, 71: 1123-1134, doi.org/10.1007/s12665-013-2516-7.
Castellazzi, G., Colla, C., De Miranda, S (2013) A coupled multiphase model for hygrothermal analysis of masonry structures and prediction of stress induced by salt crystallization. Constr Build Mater, 41: 717-731. doi.org/10.1016/j.conbu ildma t.2012.12.045.
Çelik, M. Y., Aygün, A (2018) The effect of salt crystallization on degradation of volcanic building stones by sodium sulfates and sodium chlorides. Bull Eng Geol Environ, 78: 3509–3529. doi.org/10.1007/s10064-018-1354-y.
Çelik, M. Y., Ozkan, O. Geotechnical characterization of low-porous limestones (beige–cream marble, Turkey) and evaluation of durability by salt crystallization experiments. Bull Eng Geol Environ, 81: 56 doi.org/10.1007/s10064-021-02560-4.
Cooke, R. U (1994) Salt weathering and the urban water table in deserts. In: Robinson DA, Williams RBG (eds) Rock weathering and landform evolution. Wiley, Chichester, 193–205. doi.org/10.1007/978-94-011-5228-0_6.
De Morgan, J (1960) Geography Studies of Western Iran. Chehr press (in persian).
Di Benedetto, C., Cappelletti, P., Favaro, M (2015) Porosity as key factor in the durability of two historical building stones: Neapolitan Yellow Tuff and Vicenza Stone. Eng Geol, 193: 310-319. doi.org/10.1016/j.engge o.2015.05.006.
Dunham, R. J (1962) Classification of Carbonate Rocks According to Depositional Texture. In: Ham, W.E., Ed., Classification of Carbonate Rocks, AAPG, Tulsa, 108-121.
Evans, I. S (1970) Salt crystallization and rock weathering: a review. Rev Géomorphol Dynam, 19:153-177.
Fookes, P. G., Gourley, C. S., Ohikere, C (1988) Rock weathering in engineering time. Q J Eng Geol, 21: 33-57.
Ghobadi, M. H., Babazadeh, R (2015) Experimental studies on the effects of cyclic freezing–thawing, salt crystallization, and thermal shock on the physical and mechanical characteristics of selected sandstones. Rock Mech Rock Eng, 48: 1001-1016. doi.org/10.1007/s00603-014-0609-6.
Gomez-Heras, M., Fort, R (2007) Patterns of halite (NaCl) crystallization in building stone conditioned by laboratory heating regimes. Environ Geol, 52: 259-267. doi.org/10.1007/s00254-006-0538-0.
Gonçalves, T. D., Brito, V (2014) Alteration kinetics of natural stones due to sodium sulfate crystallization: can reality match experimental simulations? Environ Earth Sci, 72: 1789-1799. doi.org/10.1007/s12665-014-3085-0.
Goudie, A., Viles, H (1997) Salt weathering hazards. Wiley, Chichester.
Grementieri, L., Daghia, F., Molari, L (2017) A multi-scale approach for the analysis of the mechanical effects of salt crystallisation in porous media. Int J Solids Struct, 126 (127): 225-239.
Jamshidi, A., Nikudel, M. R., Khamehchiyan, M., Sarikhani, R (2019) Durability assessment of travertenes against salt weathering: an experimental study. New Findings in Applied Geology, 14 (27): 1-15 (In persian).
Karimi, B (1950) ancient ways and old capitals of western Iran, Bija, (in persian).
ISRM (1981) suggested: rock characterization, testing and monitoring methods, In: Brown ET (ed) Pergamon, Oxford.
Izadpanah, H (1984) Ancient and historical works of Lorestan. Tehran: Agah press (in persian).
Lopez-Arce, P., Garcia-Guinea, J., Benavente, D., Tormo, L., Doehne, E (2009) Deterioration of dolostone by magnesium sulfate salt: an example of incompatible building materials at Bonaval Monastery, Spain. Constr Build Mater 23: 846-855.
McKinley, J. M., Curran, J. M., Turkington, A. V (2001) Gypsum formation in non-calcareous building sandstone: a case study of Scrabo sandstone. Earth Surf Process Landf, 26: 869-875. doi.org/10.1002/esp.232.
Mokhlessi, M (2000) Polhaye Qadimi Iran, Iranian Culture Heritage Organization, Tehran, Iran (in persian).
Momeni, A., Khanlari, G. R., Heidari, M., Bagheri, R., Bazvand, E (2015) Assessment of physical weathering effects on granitic ancient monuments, Hamedan, Iran. Environ Earth Sci, doi, 10.1007/s12665-015-4536-y.
Momeni, A., Khanlari, G. R., Heidari, M., Hashemi, S. S (2018) The effect of cyclic salt weathering test on deterioration potential of granitoid rocks. Geopersia, 8 (2): 143-156.
Ordóñez, S., Fort, R., García del Cura, M. A (1997) Pore size distribution and the durability of a porous limestone. Quart J Eng Geol, 30: 221-230.
Parviz, A (2001) The bridge and its transformation in the territory of Abul-Najm Badr ibn Hasnawieh, Department of Archeology, Faculty of Literature, University of Tehran.
Price, C. A (1996) Stone conservation: an overview of current research. Research in Conservation. Getty Conservation Institute, Santa Monica.
Prikryl, R., Lokajicek, T., Svobodova, J., Weishauptova, Z (2003) Experimental weathering of marlstone from Predni Kopanina (Czech Republic) - historical building stone of Prague. Build Environ, 38 (9-10): 1163-1171.
Rawlinson, S (1983) Rawlinson's travel book (passing from Zahab to Khuzestan), translated by Sikander Amanalehi Baharond, Tehran: Agah Publications.
Rezaiyan, M., Sarikhani, R., Jamshidi, A., Ghasemi-Dehnavi, A., Abdi, Y (2018) Experimental study of the effect of saline water on weathering of rocks in Robat Namaki region of Khorramabad. Journal of Engineering Geology, 16 (1): 25.
Ruffolo, S. A., La Russa, M. F., Ricca, M (2017) New insights on the consolidation of salt weathered limestone: the case study of Modica stone. Bull Eng Geol Environ, 76: 11–20. doi.org/10.1007/s10064-015-0782-1.
Sajadi, A (2003) Bridge builders along the historical roads of Lorestan. Athar Journal, 35: 246-270 (in persian).
Stein, A (1940) .Old Routes of Western Iran, London.
Torabi-Kaveh, M., Heidari, M., Mohseni, H (2019) Role of petrography in durability of limestone used in construction of Persepolis complex subjected to artificial accelerated ageing tests. Environ Earth Sci, 78: 297. doi.org/10.1007/s12665-019-8308-y.
Winkler, E. M (1966) Important agents of weathering for building and monumental stone. Eng Geol, 1: 381-400. doi.org/10.1016/0013-7952(66)90003-2.
Winkler, E. M (1973) Stone: Properties, Durability in Man's Environment. Springer-Verlag, 230p.
Yavuz, A. B., Akal, C., Türk, N., Çolak, M., Tanyu, B. F (2015) Investigation of discrepancy between tuff used as building stones in historical and modern buildings in western Turkey. Constr Build Mater, 93: 439-448. doi.org/10.1016/j.conbuildmat.2015.06.017.
Yavuz, A. B., Topal, T (2007) Thermal and salt crystallization effects on marble deterioration: examples from Western Anatolia, Turkey. Eng Geol, 90: 30-40.
Yu, S., Oguchi, C. T (2010a) Role of pore size distribution in salt uptake, damage, and predicting salt susceptibility of eight types of Japanese building stones. Eng Geol, 115: 226-236. doi.org/10.1016/j.enggeo.2009.05.007.
Zedef, V., Kocak, K., Doyen, A., Ozsen, H., Kekec, B (2007) Effect of salt crystallization on stones of historical buildings and monuments, Konya, Central Turkey. Build Environ, 42: 1453-1457. doi.org/10.1016/j.buildenv.2005.12.010.