شناسایی و پهنه بندی واحدهای سنگی، ساختاری و دگرسانی شمال غرب سرجنگل (کورین) با استفاده از مطالعات دورسنجی، صحرایی و پتروگرافی، جنوب غرب زاهدان

نویسندگان

1 کارشناس‌ارشد زمین‌شناسی اقتصادی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 دانشیار گروه زمین‌شناسی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

چکیده

منطقه سرجنگل در حاشیه غربی پهنه فلیشی شرق ایران و مرز شرقی پهنه لوت در جنوب غرب زاهدان قرار دارد. در این منطقه عمدتاً ملانژافیولیتی و سنگ­های رخساره فلیش قرار دارد. در این تحقیق ابتدا نقشه­های زمین­شناسی و دگرسانی 1:25000 با مطالعات دورسنجی تهیه و سپس با استفاده از مطالعات صحرایی و آزمایشگاهی تکمیل و تصحیح گردیدند. در این محدوده مجموعه ملانژ افیولیتی از واحدهای سنگی اولترامافیک، مافیک، سنگ­آهک و فلیش تشکیل شده است که با مجموعه‌های فلیشی مرز گسله دارند. واحد‌ فلیشی­ در غرب مجموعه­ی ملانژ افیولیتی واقع و عمدتاً متشکل از شیل، ماسه­سنگ، کنگلومرا، سنگ­های آذرآواری و میان لایه­هایی از سنگ­آهک و سنگ­های آذرین می­باشد که کمی دگرگون شده است. ساختارهای زمین­شناسی موجود در منطقه اغلب روند شمال­غرب- جنوب­شرق دارند و به دو نوع اصلی و فرعی قابل تقسیم­اند. واحد اولترامافیک عمدتاً به سرپانتین دگرسان و واحد مافیک دچار دگرسانی پروپیلیتیک و اسپیلیتی شده­ است. دگرسانی سریسیتی و آرژیلیکی به طور محلی همراه با این واحد دیده می­شود. در حاشیه­ی جنوب غربی منطقه در امتداد زون­های برشی و خرد شده دگرسانی شدیدی در مجموعه فلیش دیده می­شود که بیشتر از نوع آرژیلیک است. کانی­زایی منگنز در شیل­های ارغوانی و کانی­زایی منیزیم، کروم و مس در ملانژ افیولیتی می­باشد.            

کلیدواژه‌ها


عنوان مقاله [English]

Identification and mapping of rock, structural and alteration units in northwest of Sarjangal using remote sensing, field and petrographic studies, southwest of Zahedan

نویسندگان [English]

  • S. Baluchzahi 1
  • M. Boomeri 2
  • H. Biabangard 2
1 M. Sc. in Economic geology, University of Sistan and Baluchestan, Zahedan, Iran
2 Assoc. Prof., Dept., of Geology, University of Sistan and Baluchestan, Zahedan, Iran
چکیده [English]

Sarjangal area is located on the western margin of the Flysch Zone Eastern Iran and on the Eastern border of the Loote zone in the Southwest of Zahedan. In this area, there are mainly ophiolitic melange and rocks of the flysch facies. In this research, 1:25000 geological maps were first prepared with remote sensing studies and then completed and corrected using field and laboratory studies. In this area, the melange ophiolitic complex is composed of ultramafic, mafic, limestone and flysch rock units, which have a fault boundary with flysch complexes. The flysch-type units in western side are shale, sandstone, conglomerate, pyroclastic rocks and interlayers of limestone and igneous rocks and in the eastern side are metamorphosed flysch, shale, sandstone and limestone. The geological structures in the region are two types, a north-west trend as dominant trend and a north-east trend as accessory trend. The alterations occur mainly along shear zones in the study area. The shear zones prepare a permeable space for fluids to circulate. Manganese mineralization occurs in purple shale in the northwest of the area. Ophiolite mélange has the potential for mineralization of magnesium, chromium and copper.

کلیدواژه‌ها [English]

  • Alteration
  • Mineralization
  • Eocene flysch
  • Ophiolitic melange
  • Sarjangle
پیروان، ح.، غیومیان، ج.، امینی، ص.، لطفی، م (1382) شناسایی و تفکیک زون­های آلتراسیون هیدروترمال و سنگ­های ماگمایی با استفاده از فن و دانش سنجش از دور، مجله پژوهش و سازندگی، شماره 60.
بداغی، م.، نوحه­گر، ا.، کمانگر، م.، احمدی دوست، م (1394) کاربرد روش­های کروستا، نقشه­برداری زاویه طیفی و فیلتر تطبیقی تعدیل شده در داده­های ASTER جهت شناسایی کانی­های دگرسانی، مجله یافته­های نوین زمین­شناسی کاربردی، دوره 9، شماره 18، ص 109-119.
علی­پور، ر.، صدر، ا.، امینی، پ (1395) تحلیل پویایی تکتونیکی گسل مروارید در پهنه گسلی جوان اصلی زاگرس با استفاده از داده­های دورسنجی و تحلیل فرکتالی، مجله یافته­های نوین زمین­شناسی کاربردی، دوره 11، شماره 21، ص 125-138.
استادمهدی­عراق، ن.، مجدی­فر، س (1398) پتانسیل­یابی کانسارهای مس پوفیری در شمال غربی کمربند ماگمایی سنوزوئیک کرمان با استفاده از سنـجش از دور، مـجله یافته­های نوین زمین­شناسی کاربردی، دوره 13، شماره 26، ص 17-30.
Abduwaist, G. H (2010) Mineral Exploration and Alteration Zone Mapping Desert of EGYPT Using ASTER Data, Annual conference San Diego 10.
Abera, B. J (2005) Application of remote sensing and spatial data integration modeling to predicative mapping of apatite, mineralized zones in the Bikilal Layerd Gabbro complex, Western Ethiopia, MSc thesis, ITC, Holland.
Assiri, A., Alsaleh, A., Mousa, H (2008) Eploration of Hydrothermal Alteration Zone Using ASTER Imagery: A Case Study of Nuqrah Area, Saudi Arabia, Asian Journal of Earth Science, 1: 77-82.
Beiranvand, A (2011) Using Spectral Mapping Techniques on short wave infrared band of ASTER remote sensing data for alteration mineral mapping in SE Iran, Journal of the Physical Science, 6: 917-929.
Dehghani, M., Durocher, C., Gingerich, J (2004) Alteration Extraction Using Remote Sensing Data for Mineral Exploration, Map India.
Douglas, G (2004) Final Interpretation Report for Alut Area, Fugro airborne Surveys, geological survey of iran.
Hewson, R. D., Cudahy, T. J., Mizuhiko, S., Ueda, K., Mauger, A. J (2005) Seamless geological map generation using ASTER in the Broken Hill- Curnamona province of Australia, Remote Sensing of Environment, l 99: 159 – 172.
Honarmand, M., Ranjbar, H (2005) Application of different methods of image processing + ETM data in order to explore porphyry and vein copper deposits in the Mazar-Kuh-e-Panjdar area of ​​Kerman province, Journal of Science, Earth, 15: 121-111.
Hunt, G. L., Salisbury, J. W (1970) Visible and near infrared spectra of minerals and rocks, I. Silicate minerals. Modern Geology, 1: 283–300.
Hunt, G. R (1977) Spectral signatures of particulate minerals in the visible and near infrared. Geophys, 42: 501–513.
Pettijohn, F. J., Potter, P. E., Siever, R (1987) Sand and Sandstones, and edition, Speringer -Verlage; New York, p 553.
Prost, G. L (2001) Remote sensing for geologist, A guide to image interpretation, Second edition, Gordon and Breach, Switzerland.
Rajendran, S., Al-Khirbash, S., Pracejus, B., Nasir, S., Al-Abri, A. H., Kusky, T. M., Ghulam, A (2012) ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountains: Exploration strategy Ore Geology Reviews, 44: 121–135. 
Rockwell, B. W (2010) Automated mapping of mineral groups and green vegetation from Landsat Thematic Mapper imagery with an example from the San Juan Mountains. Colorado: U. S. eological Survey Scientific, Investigations http://pubs.usgs.gov/sim/3252/.
Rowan, L. C., Mars, J. C (2003) Lithologic mapping in the mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data, Remote Sensing of Environment, 84: 350–366.
Rowan, L., Simon, J., Hook and Michael, J (2003) mapping hydrothermally rocks at cuprite, Nevada, using the advanced space borne thermal emission and reflection radiometer (ASTER), a new satellite – imaging system, Journal of economic geology, 98: 1019-1027.
Sabins, F (1997) Remote Sensing Principles and Interpretationthird ed. p 494.
Sabins, F (1999) Remote sensing for mineral exploration, Ore Geology Reviews, 14: 157–183.                           
Sahandi, M. R., Mohajjel, M., Eghlimi, B., Eftekhar Nezhad, J (1994) 1:100000 geological map of Hasanabade- Kurin, Geological Survey of Iran.
Seo, M., Aung Kyaw, T., Takashima, I (2005) Application of remote sensing techniques on iron oxide detection from ASTER and Landsat images of Tanintharyi Coastal Area, Myanmar, Akita University, 26: 21-28.
Yetkin, E (2003) Alteration mapping by remote sensing: thesis, the Middle East Technical University, Turkey.