ارزیابی زمین شناسی و ویژگی مخزنی سازند سروک با استفاده از روش عصبی- فازی تطبیقی در یکی از میادین هیدروکربوری جنوب غربی ایران

نویسندگان

1 دانشجوی دکترا مهندسی معدن (اکتشاف)، دانشگاه ارومیه، ارومیه، ایران

2 دانشیار گروه مهندسی معدن، دانشگاه ارومیه، ارومیه، ایران

چکیده

میدان آزادگان از میدان­های نفتی ایران است، که در محدوده­ای به وسعت 20 در 75 کیلومتر در جنوب­غربی ایران در ناحیه دزفول شمالی واقع شده است. با توجه به بررسی زمین­شناسی­ منطقه، در تاقدیس حفاری شده در میدان آزادگان پس از سازند آغاجاری، سازندهای گچساران، آسماری، پابده، جهرم، گورپی، تابور، ایلام، لافان، سروک، کژدمی، داریان، گدوان، فهلیان و گرو با توالی معمول زمین­شناسی قرار گرفته­اند. در حال حاضر در میدان نفتی آزادگان، تولید از چهار سازند نفتی شامل کژدمی، گدوان، فهلیان و سروک انجام می­شود که البته مخزن اصلی این میدان سازند سروک بوده و از سنگ­های کربناته تشکیل گردیده است. از طرفی نفوذپذیری مهم­ترین عامل برای توصیف دقیق و مدل­سازی سنگ مخزن هیدروکربوری می­باشد. معمولا روش­های استاندارد برای تعیین نفوذپذیری، آنالیز مغزه و آزمایش چاه می­باشد. این روش­ها بسیار گران هستند، هم­چنین چاه­های یک میدان دارای مغزه نمی­باشند. در نتیجه به دلیل اینکه درتمام چاه­های یک میدان معمولا نگارهای چاه موجود هستند، ارائه روش یا روش­هایی که بتوانند با استفاده از نگارهای چاه­پیمایی خواص پتروفیزیکی مخزن از جمله نفوذپذیری را ارائه دهند، اهمیت زیادی خواهند داشت. روش­های هوشمند از روش­های جدید، کم­هزینه و دقیقی هستند که می­توانند با استفاده از داده­های چاه­پیمایی، نفوذپذیری مخزن را در کمترین زمان ممکن به صورت غیرمستقیم تخمین بزنند. لذا با استفاده از چاه­­نگارهای مختلف و روش سیستم استنتاج عصبی- فازی تطبیقی  (ANFIS)، نفوذپذیری در سازند سروک یکی از مخازن هیدروکربوری جنوب غربی ایران به صورت غیرمستقیم تخمین زده شده است. جهت بکارگیری این روش هوشمند پایگاه داده به دو بخش داده­های آموزش (1754 داده) و داده­های آزمون جهت ارزیابی مدل­ها (752 داده) تقسیم شدند. نتایج نشان­دهنده عملکرد بسیار مناسب روش هوشمند، در تخمین نفوذپذیری است. بنابراین می­توان از مدل هوشمند، به عنوان یک روش قدرتمند، سریع و دقیق برای تخمین غیرمستقیم نفوذپذیری در مخازنی که نفوذپذیری از طریق مغزه اندازه­گیری نشده استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Geology and Reservoir Characteristic of Sarvak Formation Using Adaptive Neuro-Fuzzy Method in One of the Hydrocarbon Fields of Southwest Iran

نویسندگان [English]

  • H. Nazari 1
  • F. Hajizadeh 2
1 Ph. D. student, of Mining Engineering, Urmia University, Urmia, Iran
2 Assoc. Prof., Dept., of Mining Engineering, Urmia University, Urmia, Iran
چکیده [English]

Azadegan field is one of Iran's oil fields, which is located in an area of 1500 km2 in the southwest of Iran in the northern Dezful region. According to the geological survey of the region, in the anticlines excavated in Azadegan field after the Aghajari formation, the Gachsaran, Asmari, Pabdeh, Jahrom, Gurpi, Tabor, Sarvak and Fahlian formations, are placed in the usual geological sequence. At present, in the Azadegan oil field, production is carried out from four oil formations, including Kazhdami, Gadvan, Fahlian andSarvak, although the main reservoir of this field is the Sarvak formation and it is composed of carbonate rocks. On the other hand, permeability is the most important factor for accurate description and modeling of hydrocarbon reservoir rocks. Usually, the standard methods for determining permeability are core analysis and well testing. These methods are very expensive, also the wells of a field do not have a core. As a result, because well logs are usually available in all the wells of a field, it will be very important to provide a method or methods that can provide the petrophysical properties of the reservoir, including permeability, using well logs. Smart methods are new, low-cost and accurate methods that can indirectly estimate reservoir permeability in the shortest possible time using well drilling data. Therefore, by using different well logs and the method of adaptive neural-fuzzy inference system (ANFIS), the permeability in Sarvak Formation, one of the hydrocarbon reservoirs in southwestern Iran, has been indirectly estimated. In order to use this intelligent method, the database was divided into two parts: training data (1754 data) and test data for evaluating the models (752 data). The results show the very appropriate performance of the intelligent method in permeability estimation. Therefore, the smart model can be used as a powerful, fast and accurate method for indirect estimation of permeability in reservoirs where permeability has not been measured through core.

کلیدواژه‌ها [English]

  • Geology
  • Permeability
  • Adaptive neuro-fuzzy inference system
  • Hydrocarbon reservoir
آقانباتی، ع (1385) زمین­شناسی ایران، انتشارات سازمان زمین شناسی و اکتشافات معدنی کشور، چاپ سوم، 606 ص.
عاقبتی، ر (1387) معرفی یک میدان: طرح توسعه میدان آزادگان، ماهنامه­ی علمی- ترویجی اکتشاف و تولید، شماره 51، ص 6-8.
علیزاده، ب.، سعادتی، ح.، حسینی، س. ح.، گندمی ثانی، ا. ر (1392) مطالعه نفت مخزن آزادگان در میدان نفتی آزادگان با استفاده از روش کروماتوگرافی گازی، ماهنامه علمی- ترویجی اکتشاف و تولید نفت و گاز، شماره 103.
قلی­پور، س.، کدخدائی، ع.، کمالی، م. ر (1394) تخمین نگار کربن آلی کل با استفاده از داده­های ژئوشیمیایی و پتروفیزیکی توسط شبکه عصبی مصنوعی در میدان نفتی آزادگان، مجله پژوهش نفت، شماره 2-85.
مشایخی، ر.، رضایی­پرتو، ک (1395) ارزیابی پتروفیزیکی و تعیین پارامترهای لیتولوژی، حجم شیل، تخلخل و اشباع آب در سازند سروک در یکی از میادین نفتی واقع در دشت آبادان به روش MRGC، چهارمین کنفرانس بین­المللی پژوهش در مهندسی، علوم و تکنولوژی.
ناصریان اصل، م.، امیری، ا (1393) میدان نفتی آزادگان از دیدگاه زمین­شناسی و ژئوشیمی، کرج، رهام اندیشه، 65 ص.
نظری، ح.،  نظری، ی.، دهقانی، م.، عباس­نژاد، ا.،  حاجی­زاده،  ف (1401) ارزیابی مدل هوشمند در برآورد هدایت­الکتریکی آب­های­زیرزمینی (مطالعه موردی: دشت راین)، یافته­های نوین زمین شناسی کاربردی، دوره 16، شماره 32. ص 1-14.
نظری، ح.، دهقانی، م.، پیرخراطی، ح.، اسدزاده، ف.، حاجی­زاده، ف (1401) پایش پارامترهای کیفیت آب زیرزمینی با استفاده از روش سیستم استنتاج عصبی- فازی تطبیقی  (ANFIS) (مطالعه موردی: دشت اردبیل)، یافته­های نوین زمین شناسی کاربردی، دوره 16، شماره 31، ص 1-12.
Abdollahie Fard, I., Braathen, A., Mokhtari, M., Alavi, S. A (2006) Interaction of the Zagros Fold-Thrust belt and the Arabian-type, deep-seated folds in the Abadan Plain and the Dezful Embayment, SW Iran. Petroleum Geoscience, 12: 347-362.
Abeed, Q., Alkhafaji, A., Littke, R (2011) Source rock potential of the Upper Jurassic-Lower Cretaceous succession in the southern Mesopotamian basin, southern Iraq, Journal of petroleum geology, 34: 117-134.
Aghli, Gh., Moussavi-Harami, R., Mortazavi, S., Mohammadian, R (2019) Evaluation of new method for estimation of fracture parameters using conventional petrophysical logs and ANFIS in the carbonate heterogeneous reservoirs, Journal of Petroleum Science and Engineering, 172: 1092-1102.
Ahmadi, M. A., Ahmadi, M. R., Hosseini, S. M., Ebadi, M (2014) Connectionist model predicts the porosity and permeability of petroleum reservoirs by means of petro-physical logs: Application of artificial intelligence, Journal of Petroleum Science and Engineering, 123: 183-200.
Ahmadi, M. A., Zhangxing, C (2019) Comparison of machine learning methods for estimating permeability and porosity of oil reservoirs via petro-physical logs, Petroleum, 5 (3): 271-284.
Al-AbdulJabbar, A., Al-Azani, Kh., Elkatatny, S (2020) Estimation of Reservoir Porosity from Drilling Parameters Using Artificial Neural Networks, Petrophysics, 61 (03): 318–330.
Alavi, M (2004) Regional Stratigraphy of the Zagros Fold-Thrust Belt of Iran and Its Proforeland Evolution. American Journal of Science, 304: 1-20.
Al-Husseini, M. I (2000) Origin of the Arabian Plate Structures: Amar Collision and Najd Rift, GeoArabia, 5: 527-542.
Alizadeh, B., Saadati, H., Rashidi, M., Kobraei, M (2016) Geochemical investigation of oils from Cretaceous to Eocene sedimentary sequences of the Abadan Plain, Southwest Iran, Marine and Petroleum Geology, 73: 609-619.
Alizadeh, B., Sarafdokht, H., Rajabi, M., Opera, A., Janbaz, M (2012) Organic geochemistry and petrography of Kazhdumi (Albian-Cenomanian) and Pabdeh (Paleogene) potential source rocks in southern part of the Dezful Embayment, Iran, Organic Geochemistry, 49: 36-46.
Anemangely, M., Ramezanzadeh, A., Amiri, H., Hoseinpour, S. A (2019) Machine learning technique for the prediction of shear wave velocity using petrophysical logs, Journal of Petroleum Science and Engineering, 174: 306-327.
Anifowose, F., Abdulraheem, A (2011) Fuzzy logic-driven and SVM-driven hybrid computational intelligence models applied to oil and gas reservoir characterization, Journal of Natural Gas Science and Engineering, 3: 505-517.
Anifowose, F., Labadin, J., Abdulraheem, A (2015) Improving the prediction of petroleum reservoir characterization with a stacked generalization ensemble model of support vector machines, Applied Soft Computing, 26: 483-496.
Ansari, H. R., Gholami, A (2015) an improved support vector regression model for estimation of saturation pressure of crudoils, Fluid Phase Equilibria, 402: 124-132.
Asoodeh, M., Bagheripour, P (2012) Prediction of compressional, shear, and stoneley wave velocities from conventional well log data using a committee machine with intelligent systems, Rock Mechanics and Rock Engineering, 45: 45-63.
Bagheripour, P., Gholami, A., Asoodeh, M., Vaezzadeh-Asadi, M (2015) Support vector regression based determination of shear wave velocity, Journal of Petroleum Science and Engineering, 125: 95-99.
Baziar, S., Gafoori, M. M., Pour, M., Mehdi, S., Bidhendi, M. N., Hajiani, R (2015) Toward a Thorough Approach to Predicting Klinkenberg Permeability in a Tight Gas Reservoir: A Comparative Study, Iranian Journal of Oil & Gas Science and Technology, 4: 18-36.
Berberian, M., King, G (1981) Towards a Paleogeography and Tectonic Evolution of Iran, Canadian Journal of Earth Sciences, 18(2): 210-265.
Beydoun, Z. R (1991) Arabian plate hydrocarbon geology and potential: A plate tectonic approach, American Association of Petroleum Geologists (AAPG), Tulsa. 
Bezdek, J. C (1973) Fuzzy mathematics in pattern classification, Cornell University, Ithaca.
Du, Y., Chen, J., Cui, Y., Xin, J., Wang, J., Li, Y.Z., Fu, X (2016) Genetic Mechanism and development of the unsteady Sarvak play of the Azadegan oil Field, Southwest of Iran, Petroleum Science, 13: 34-51.
England, W. A (2007) Reservoir geochemistry-A reservoir engineering perspective, Journal of Petroleum Science and Engineering, 58: 344-354.
Eskandari, H., Rezaee, M., Mohammadnia, M (2004) Application of multiple regression and artificial neural network techniques to predict shear wave velocity from wireline log data for a carbonate reservoir South-West Iran, CSEG recorder, 42: 48.
FitzGerald, E. M., Bean, C. J., Reilly, R (1999) Fracture-frequency prediction from borehole wireline logs using artificial neural networks, Geophys Prospect, 47: 1031–44.
Flavio, S. A., Gregor, P. E (1999) The velocity-deviation log a tool to predict pore type and permeability trends in carbonate drill holes from sonic and porosity or density logs, Am. Assoc. Pet. Geol. Bull, 83: 450–66.
Gholami, R., Moradzadeh, A (2012) Support vector regression for prediction of gas reservoirs permeability, Journal of Mining and Environment, 2: 41-52.
Gholami, R., Moradzadeh, A., Maleki, S., Amiri, S., Hanachi, J (2014) Applications of artificial intelligence methods in prediction of permeability in hydrocarbon reservoirs, J Pet Sci Eng, 122: 643-56.
Ja’fari, A., Kadkhodaie-Ilkhchi, A., Sharghi, Y., Ghanavati, K (2012) Fracture density estimation from petrophysical log data using the adaptive neuro-fuzzy inference system, J. Geophys, Eng. 9: 105–114.
 James, G. A., Wynd, J. G (1965) Stratigraphic nomenclature of Iranian oil consortium agreement area, AAPG Bulletin, 49: 2182-2245.
Jang, J. S. R., Sun, C. T., Mizutani, E (1997) Neuro-Fuzzy and Soft Computing A Computional Approach to Learning and Machine Intelligence, Prentice Hall, 640p.
Jayalakshmi, T., Santhakumaran, A (2011) Statistical normalization and back propagation for classification, Int J Comput Theory Eng, 3(1): 1793-8201.
Kadkhodaie Ilkhchi, A., Rezaee, M., Moallemi, S. A (2006) A fuzzy logic approach for estimation of permeability and rock type from conventional well log data: an example from the Kangan reservoir in the Iran Offshore Gas Field, J. Geophys. Eng, 3: 356–369.
Kobraei, M., Rabbani, A. R., Taati, F (2017) Source rock characteristics of the Early Cretaceous Garau and Gadvan formations in the western Zagros Basin-Southwest Iran, Journal of Petroleum Exploration and Production Technology, 7: 1051-1070.
MATLAB user’s guide (2006) Fuzzy logic Toolbox, by the math works Inc.
Moatazedian, I., Rahimpour-Bonab, H., Kadkhodaie-Ilkhchi, A., Rajoli, M (2011) Prediction of shear and Compressional Wave Velocities from petrophysical data utilizing genetic algorithms technique: A case study in Hendijan and Abuzar fields located in Persian Gulf, Geopersia, 1: 1-17.
Monjezi, M., Dehghani, H (2008) Evaluation of effect of blasting pattern parameters on back break using neural networks, International Journal of Rock Mechanics & Mining Sciences, 45: 1446–53.
Nazari, S., Kuzma, H. A., Rector III, J. W (2011) Predicting permeability from well log data and core measurements using support vector machines, SEG Annual Meeting, Society of Exploration Geophysicists.
Nouri Taleghani, M., Saffarzadeh, S., Karimi Khaledi, M., Zargar, Gh (2013) Development of an Intelligent System to Synthesize Petrophysical Well Logs, Iranian Journal of Oil & Gas Science and Technology, 2 (3): 11-24.
Oden, C. O., LoCoco, J. J (2000) Variable Frequency Monopole-Dipole Sonic Logging for Mechanical and Hydrogeologic parameters, Conference Proceedings of the Annual Meeting of Environmental and Engineering Geophysical Society, Denver, CO.
Ohen, H. A (2003) Calibrated wire-line Mechanical Rock Properties Model for Predicting and preventing wellbore Collapse and Sanding, SPE, European Formation Damage Conference.
Okon, A. N., Adewole S. E., Uguma, E. M (2020) Artificial neural network model for reservoir petrophysical properties: porosity, permeability and water aturation prediction, Modeling Earth Systems and Environment.
Rahimpour-Bonab, H., Mehrabi, H., Enayati-Bidgoli, A. H., Omidvar, M (2012) Coupled imprints of tropical climate and recurring emergence on reservoir evolution of a mid-Cretaceous carbonate ramp, Zagros Basin, Southwest Iran: Cretaceous Research, 37: 15-34.
Rajabi, M., Bohloli, B., Ahangar, E. G (2010) Intelligent approaches for prediction of compressional, shear and Stoneley wave velocities from conventional well log data: A case study from the Sarvak carbonate reservoir in the Abadan Plain (Southwestern Iran), Computers & Geosciences, 36: 647-664.
Ross, T. J (2009) Fuzzy logic with engineering applications: John Wiley & Sons,
Saemi, M., Ahmadi, M., Yazdian Varjani, A (2007) Design of neural networks using genetic algorithm for the permeability estimation of the reservoir, Journal of Petroleum Science and Engineering, 59: 97–105.
Sharland, P. R (2001) Arabian Plate sequence stratigraphy. GeoArabia special publication 2, Gulf PetroLink, Manama.
 Specht, D. F (1991) A general regression neural network, IEEE Trans Neural Netw, 2(6): 568–576.
Srinivasan, K., Fisher, D (1995) Machine Learning Approaches to Estimating Software Development Effort, IEEE Transactions on Software Engineering, 21(2): 126–137.
Tariq, Z., Mahmoud, M., Abdulraheem, A (2019) An Artificial Intelligence Approach to Predict the Water Saturation in Carbonate Reservoir Rocks, Paper presented at the SPE Annual Technical Conference and Exhibition, Calgary, Alberta, Canada.
Yue, Y., Wang, J (2007) SVM method for predicting the thickness of sandstone, Applied Geophysics, 4: 276-281.
Zeinalzadeh, A., Moussavi-Harami, R., Mahboubi, A., Sajjadian, V. A (2015) Basin and petroleum system modeling of the Cretaceous and Jurassic source rocks of the gas and oil reservoirs in Darquain field, south west Iran, Journal of Natural Gas Science and Engineering, 26: 419-426.
Zoveidavianpoor, M., Samsuri, A., Shadizadeh, S. R (2013) Adaptive neuro fuzzy inference system for compressional wave velocity prediction in a carbonate reservoir, Journal of Applied Geophysics, 89: 96-107.