امامعلیپور، ع.، نظری، ح.، اسمعیلزاده، م (1399) مروری بر توزیع ژئوشیمیایی عناصر کمیاب و نادر خاکی در زغالسنگها، با نگرشی بر زغالسنگهای ایران. نشریه یافتههای نوین زمینشناسی کاربردی، دوره 14، شماره 28، ص 69-62 .
دولتی اردجانی، ف.، زارع، م.، مرادزاده، ع (1389) استفاده از دینامیک سیالات محاسباتی و روش ژئوفیزیکی VLF در مدلسازی دوبعدی اکسایش پیریت و تولید زهاب اسیدی در باطلههای زغالشویی. نشریه علمی پژوهشی امیرکبیر، دوره 40، شماره 2، ص 42-33.
گزارش شرکت معادن زغالسنگ البرز شرقی (1396) بررسی زیستمحیطی تجهیز و نوسازی کارخانه زغالشویی مهماندوست. مهندسین مشاور ارزیاب محیط نوین. 190 ص.
Dai, S., Liu, J., Ward, C. R., Hower, J. C., French, D., Jia, S., Hood, M. M., Garrison, T. M (2016) Mineralogical and geochemical compositions of Late Permian coals and host rocks from the Guxu Coalfield, Sichuan Province, China, with emphasis on enrichment of rare metals. International Journal of Coal Geology, 166: 71-95.
Dai, S., Ren, D., Chou, C., Finkelman, B., Seredin, V. V., Zhou, Y (2012) Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology, 94: 3-21.
Dang, Z., Liu, C., and Haigh, M. J (2002) Mobility of heavy metals associated with the natural weathering of coal mine spoils. Environmental Pollution, 118: 419–426.
Eby, G. N (2016) Principles of environmental geochemistry, Waveland Press, Illinois, 514 p.
Finkelman, B., Palmer, C. A., Wang, P (2018) Quantification of modes of occurrence of 42 elements in coal. International Journal of Coal Geology, 185: 138-160.
Finkelman, R. B (1981) Modes of occurrence of trace elements in coal. U.S. Geological Survey Open-File Report, pp. 81-99.
Finkelman, R. B., Gross, P. M (1999) The types of data needed for assessing the environmental and human health impacts of coal. International Journal of Coal Geology, 40: 91-101.
Fu, B., Hower, J. C., Zhang, W., Luo, G., Hu, H., Yao, H (2022) A Review of Rare Earth Elements and Yttrium in Coal Ash: Content, Modes of Occurrences, Combustion Behavior, and Extraction Methods. Progress in Energy and Combustion Science, 88: 100954.
Islam, N., Rabha, S., Subramanyam, K. S. V., Saikia, B. K (2021) Geochemistry and mineralogy of coal mine overburden (waste): a study towards their environmental implications Chemosphere, 274: 129736.
Ketris, M. P., Yudovich, Y. E (2009) Estimations of clarkes for carbonaceous biolithes: world average for trace element contents in black shales and coals. International Journal of Coal Geology, 78: 135–148.
Mketo, N., Nomngongo, P. N (2020) An improved microwave assisted sequential extraction method followed by spectrometric analysis for metal distribution determination in South African coal samples. Scientific Report, 10: 1–11
Moore, F., Esmaeili, A (2012) Mineralogy and geochemistry of the coals from the Karmozd and Kiasar coal mines, Mazandaran province, Iran. International Journal of Coal Geology, 96: 9–21.
Narwal, R. P., Singh, B. R (1998) Effect of organic materials on partitioning, extractability and plant uptake of metals in an alum shale soil. Water, Air, and Soil Pollution, 103: 405-421.
Song, X., Hongtao M., Benjamin M., Kaijie, L (2021) Petrography, Mineralogy, and Geochemistry of Thermally Altered Coal in the Tashan Coal Mine, Datong Coalfield, China. Minerals, 119: 1024-1033.
Spears, D. A (2013) The determination of trace element distributions in coals using sequential chemical leaching-A new approach to an old method” Fuel, 114: 31–37.
Swaine, D. J (1995) The contents and some related aspects of trace elements in coals. In Environmental aspects of trace elements in coal. Springer, Dordrecht, 523 p.
Tessier, A., Campbell, P., Bisson, M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51: 844–851.
Zheng, L., Liu, G., Qi, C., Zhang, Y., Wong, M (2008) The use of sequential extraction to determine the distribution and modes of occurrence of mercury in Permian Huaibei coal, Anhui Province, China. International Journal of Coal Geology, 73: 139–155.