ارزیابی خصوصیات ژئومکانیکی سنگ‌های آرژیلیتی در منطقه مکران جنوبی (راه‌آهن چابهار- نیک شهر)

نویسندگان

1 دانشجوی دکترا، گروه زمین‌شناسی، دانشگاه تربیت مدرس، تهران، ایران

2 استاد گروه زمین‌شناسی، دانشگاه تربیت مدرس، تهران، ایران

3 استادیار گروه زمین‌شناسی، دانشگاه تربیت مدرس، تهران، ایران

4 دانشجوی دکترا، گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

سنگ‌های آرژیلیتی از جمله سنگ‌های ضعیف هستند که به دلیل تورم پذیری، شکفتگی زیاد و مقاومت کم در اجرای پروژه‌های مهندسی باعث مشکلاتی می‌شود. پهنه ساختاری مکران جنوبی در قسمت جنوب شرقی ایران حد فاصل بین دو گسل تراستی مکران و قصر- قند و شامل دو زیر پهنه مکران ساحلی و مکران بیرونی قرار دارد. عمده رسوبات از خرده‌های کوارتز در حد سیلت با زمینه کربناته دارای کانی‌های فرعی کلسیت و خرده‌های فسیل است که نشان‌دهنده محیط دریایی کم‌عمق و کم انرژی به سن نئوژن می‌باشد. توزیع دانه‌ها عمدتاً سیلتی و زاویه‌دار در یک زمینه عمدتاً کربناته با درصد کربنات کلسیم کمتر از 15 درصد و در مکران ساحلی به دلیل تشکیل کلسیت اسپارایتی بین 70 تا ۸۰ درصد است. در این پژوهش به‌منظور تعیین ویژگی‌های فیزیکی و مکانیکی سنگ‌های آرژیلیتی مکران جنوبی در امتداد محور راه‌آهن چابهار- نیک شهر، آزمایش‌های تعیین چگالی، تخلخل، آزمایش مقاومت بار نقطه‌ای و آزمایش فلورسانس پرتوایکس (XRF) و نتایج پراش اشعه ایکس (XRD) انجام‌شده است. نتایج XRF نمونه‌ها نشان می‌دهد که عمده اکسیدهای تشکیل‌دهنده SiO2،  Al2O3، Fe2O3 و CaO می‌باشد و نتایج XRD نشان‌دهنده کانی‌شناسی عمدتاً سیلتی شامل: کوارتز، کلسیت، آلبیت، کلینوکلر، مسکویت و دولومیت می‌باشد. برداشت صحرائی در هرکدام از زیر پهنه‌ها به‌منظور طبقه‌بندی مهندسی سنگ و نمونه‌برداری جهت آزمون‌های آزمایشگاهی برای تعیین ویژگی‌های ژئومکانیکی مورد استفاده قرار گرفت. مطابق طبقه‌بندی مهندسی سنگ عمده رسوبات در طبقه‌بندی ضعیف و خیلی ضعیف به دلیل شرایط تکتونیکی و هوازدگی زیاد قرار دارند. مطالعات سنگ‌شناسی و تعیین خصوصیات فیزیکی نشان می‌دهد رسوباتی که در مکران ساحلی قرار دارند به دلیل جوان بودن حوضه رسوب‌گذاری دارای تخلخل بیشتر و سیمان کمتر می‌باشند و براساس مقاومت بار نقطه‌ای (Is50<2MPa) مطابق طبقه‌بندی بینیاوسکی در رده سنگ‌های ضعیف قرار می‌گیرند مقادیر مقاومت تراکمی تک‌محوره نشان می‌دهد که عمده سنگ‌ها دارای مقاومت کمتر از 20 مگا پاسکال می‌باشند که دارای همبستگی بالایی (R2=0.94). با مقدار تخلخل می‌باشد؛ و همچنین رابطه مقاومت فشاری تک‌محوری با دانسیته و کربنات کلسیم به ترتیب برابر (R2=0.81) و (R2=0.89) می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of geomechanical properties of argillite rocks in the region of south Makran (Chabahar-Nikshahr railway)

نویسندگان [English]

  • V. Ahmadi khounsaraki 1
  • A. Uromeihy 2
  • S. Madanipour 3
  • M. Amiri 4
1 Ph. D. student, Dept., of Geology, Tarbiat Modares University, Tehran, Iran
2 Prof., Dept., of Geology, Tarbiat Modares University, Tehran, Iran
3 Assist. Prof., Dept., of Geology, Tarbiat Modares University, Tehran, Iran
4 Ph. D. student, Dept., of Geology, Faculty of Science, Ferdowsi University, Mashhad, Iran
چکیده [English]

Argillite rocks are among the weak rocks that cause problems in engineering projects due to their swelling, high cracking, low strength. The southern Makran structural zone is located in the southeastern part of Iran, between the two faults of Makran Trust and Qasr Ghand, and includes two sub-zones of coastal Makran and outer Makran. Most of the sediments are Quartz fragments (silt size) with carbonate cement containing sub-minerals of calcite and fossil fragments, indicating a shallow and low-energy marine environment of the Neogene age. The distribution of grains is mainly silty and angular in a Carbonate cement field with a calcium carbonate content of less than 15% and in coastal Makran due to the formation of sprite calcite between 70 and 80%. In order to determine the physical and mechanical properties of southern Makran argillaceous rocks along the Chabahar-Nikshahr railway axis in this research, porosity tests, plate load test (PLT), X-ray fluorescence test (XRF) and diffraction results X-ray (XRD) are conducted. The results of XRF samples show that the major constituent oxides are SiO2, Al2O3, Fe2O3 and CaO, and the results of XRD indicate mainly silty mineralogy including: Quartz, calcite, albite, Muscovite, Clinochlore and Dolomit. The Field study in each of the sub-zones was used for rock mass classification and sampling for laboratory tests to determine geotechnical properties. According to the rock mass classifications, most sediments are in poor and very poor classifications due to tectonic conditions and high weathering. Petrological studies and determination of physical properties show that sediments located in coastal Makran have more porosity and less cement due to the young sedimentation basin and are in the category of weak rocks based on point load strength (Is50<2MPa) according to Bieniawski classification. Indirect results of the uniaxial compaction test show that the sediments have a strength of less than 20 MPa, which has a high correlation with the amount of porosity (R2 = 0.95). Also, the relationships between uniaxial compressive strength and density and Calcium carbonate are (R2 = 0.81) and (R2 = 0.89), respectively.

کلیدواژه‌ها [English]

  • Makran
  • argillite
  • weak rocks
  • Qasr Ghand fault
  • physical and mechanical properties
احمدی، م.، نجاتی، ح (1389) تخمین ضریب بهره‌وری TBM بر اساس شاخص‌های سیستم طبقه‌بندی مهندسی سنگ و نیروی نفوذ ماشین، نشریۀ مهندسی معدن، دورۀ 5، شمارۀ 10.
اجل­لوئیان، ر.، داوودی، د (1382) رده‌بندی توده­سنگ، روشی کاربردی در مهندسی عمران، ترجمه، انتشارات فن‌آوران.
احراری­رودی، م.، موسوی­حرمی، س. ر.، محبوبی، ا.، نجفی، م (1385) بازنگری سن و تفسیر تاریخچه رسوب‌گذاری پادگانه‌های دریایی شرق چابهار. مجموعه مقالات دهمین همایش انجمن زمین‌شناسی ایران،13 شهریورماه 1385، دانشگاه تربیت مدرس تهران، 9ص.
آقانباتی، ع (1385) زمین‌شناسی ایران، انتشارات سازمان زمین‌شناسی و اکتشافات معدنی کشور، 586 ص.
امیری، ص.، محمدی، ا (1392) برآورد پارامترهای ژئومکانیکی توده­سنگ‌های واقع در محل ساختگاه سد خرسان 3. هشتمین همایش انجمن زمین‌شناسی مهندسی و محیط‌ زیست ایران، دانشگاه فردوسی مشهد.
بشیرگنبدی، م.، ارومیه‌ای، ع.، نیکودل، م.، لشکری­پور، غ. ر (1388) ارزیابی کار آیی رده‌بندی  RMRدر پیش‌بینی رفتار مهندسی سازند شمشک در حفریات زیرزمینی منطقۀ سیاه­‌بیشه. مجموعه مقالات ششمین کنفرانس زمین‌شناسی مهندسی و محیط ‌زیست ایران.
دادخواه، ر.، اجل­لوئیان، ر.، هاشمی اصفهانیان، م.، محمدی کوجانی، ج (1384) برآورد پارامترهای ژئومکانیکی توده سنگ‌های دربرگیرنده مسیر تونل‌های متروی اصفهان قطعه جنوبی )صفه آزادی(، مجموعه مقالات نهمین همایش انجمن زمین‌شناسی ایران، دانشگاه تربیت ‌معلم تهران.
رضایی، خ (1395) تأثیر خصوصیات فیزیکی و شیمیایی رسوبات مارنی بر فرسایش و رسوب‌زادی آن‌ها با استفاده از دستگاه شبیه‌ساز باران در منطقه لاتشور پاکدشت. نشریه تحلیل فضائی مخاطرات محیطی، سال سوم، شماره 3، ص 40-21.
زارع، م.، ترابی، س. ر (1388) مطالعه آزمایشگاهی تأثیر مواد پرکننده بر مقاومت برشی ناپیوستگی‌های سنگ، هشتمین کنگره بین‌المللی مهندسی عمران، دانشگاه شیراز.
Anon (1979) Classification of rocks and soils for engineering geological mapping: Bulletin of the International Association of Engineering Geology, 19: 364 – 371.
ASTM D4644-87 (1996) ASTM standard test method for slake durability of shales and similar weak rocks: American Standard for Testing Materials.
ASTM D 2216-80 (1989) Standard Method for Laboratory Determination of Water Moisture Content of Soil, Rock, and Ž. Soil-Aggregate Mixtures. Annual Book of ASTM Standards, Sec. 4, Vol. 04.08, Soil and Rock, American Society for Testing and Materials, Building Stones, ASTM, Philadelphia, 267–269.
Aghanabati, A., Madavi, M. A., Sahandi, M. R., Samadian, M. R (1996) Geological map of Nikshahr., Scal 1:250000, Geological survey of iran.
Azarafza, M., Ghazifard, A., Akgün, H., Asghari-Kaljahi, E (2019) Geotechnical characteristics and empirical geo-engineering relations of the South Pars Zone marls, Iran, Geomechanics and Engineering, An International Journal, Techno press, 19(5): 393-405.
Bieniawski, Z. T (1973) Engineering classification of jointed rock masses: Civil Engineering: Siviele Ingenieurswese, (12): 335-343.
Bieniawski, Z. T (1989) Engineering Rock Mass Classifications: Wiley, New York, pp. 251.
Barton, N (1987) Rock mass classification and tunnel reinforcement selection using the Q-system. In Rock Classification systems for engineering purposes: ASTM International, Cincinnati, Ohio.
DIN (1987) Subsoil and ground water, Designation and description of soil and rock, Borehole log for boring without continuous taking of core samples in soil and rock: DIN 4022 Part 1, Deutsches Institut für Normung e.V., Berlin (in German).
DIN (1990) Testing of natural stone, Crystallization test: DIN 52111, Deutsches Institut für Normung e.V., Berlin (in German).
DIN (2004) Geotechnical investigation and testing, Identification and classification of rock: Part 1, Identification and description, ISO 14689-1:2003. DIN EN ISO 14689-1. Deutsches Institut für Normung e.V., Berlin (in German).
Dolati, A (2010) Stratigraphy, structural geology and low-temperature thermochronology across the Makran accretionary wedge in Iran: Doctoral dissertation., ETH, Zurich.
Eshraghi, S. A., Kholghi, M. H., Abdollahi, M. R., Sohaili, M., Samadian, M.R (1996) Geological map of Peersohrab., Scal 1:100000, Geological survey of iran.
Edelbro, C (2004) Evalution of rock mass strength., Lulea University of technology.
Greensmith, J. T (1979) Petrology of sedimentary rocks., Georga Allen and uniuin.
Ghiasi, V., Husaini, O. H., Rostami, J., Zainuddin, B., Ghiasi, S., Huat, B. K., Ratnasamy, M (2011) Geotechnical and    geological studies of NWCT tunnel in Iran focusing on the stabilization analysis and design of support: A case study. Scientific Research and Essays, 6 (1): 79-97.
Ghobadi, M. H., Amiri, M., Aliani, F (2020) The study of engineering geological properties of peridotites in Harsin, Kermanshah province (A case study). Journal of Engineering Geology, 14 (1): 105-132.
Ghobadi, M. H., Amiri, M., Aliani, F (2020) The study of relationship weathering, mineralogical and texture of peridotite rocks with engineering geological peroperties (Case study: peridotite Harsin city, Kermanshah province). New Findings in Applied Geology, 14(27): 43-54.
Ghobadi, M., Amiri, M., Rasouli Farah, M (2021) The study of geotechnical properties of Qom formation sandstones and their using as borrow material (case study: Latgah village, northern Hamedan). New Findings in Applied Geology, 15(29): 55-70.
Hosseinitoudeshki, V., Vosoughikargazloo, A., Noori Gheidari, M. H., and Sarveram, H (2012) Influences of crushed fault zone in the stability of Zaker- Sorkhedizaj tunnel, NW Iran: Middle-East Journal of Scientific Research, 12 (10): 1426-1434.
Hooshmand, A., Aminfar, M. H., Asghari, E., and Ahmadi, H (2012) Mechanical and physical characterization of Tabriz Marls, Iran: Geotechnical and Geological Engineering, 30(1): 219-232.
ISRM Suggested Methods (1981) In: Brown, E.T. (Ed.), Rock Characterization Testing and Monitoring. Pergamon, Oxford.
Jafarian, M. B., Abdoli, M., Samadian, M. R (2004) Geological map of Chabahar, Scal 1:100000, Geological survey of iran.
Mehrotra, V. K (1992) Estimation of engineering parameters of rock mass: Ph. D, Thesis epartment of Civil Engineering., University of roorkee, India.
Moradi, S., Amiri, M., Rahimi Shahid, M., Karrari, S (2021) The presentation of simple and multiple regression relationships to the evaluation of uniaxial compressive strength sedimentary and pyroclastic rocks with usage experimental of the Schmidt hammer. New Findings in Applied Geology, doi: 10.22084/nfag.2021.24761.1480
Marinos and Hoek (2001) Estimating the geotechnical properties of heterogeneous rock masses such as flysch: Bulletin of engineering geology and the environment, 60: 85-92.‏
Nickman, Marion., Spaun, George., Thuro, K (2006) Engineering geological classification of weak rocks: In Proceedings of the 10th International IAEG Congress.‏ September.
Pettinjohn, F. H., Potter, P. E., sierver, R (1973) Sand and sand stone. Springer- verlag. Newyork.
Palmstroom, A., Singh, R (2001) The deformation modulus of masses comparisons between in- situ tests and indirect estimates: Tunneling Underground Space Technol, 16: 31-115.
Quane, S. L., Russel, J. K (2003) Rock strength as a metric of welding intensity in pyroclastic deposits: Eur J Mineral, 15: 855–864.
Robert, H (2002) An evaluation of slope stability classification: ISRM EUROCK, Sociedade Portuguesa de Geotecnia. Portugal, Madeira, Funchal, 3-32.
Romana, M (2004) DMR (an adaptation of RMR), a new geomechanics classification for using dams' foundations: Universidad politechnica de Valencia., Spain.
Ramamurthy, T (2008) Penetration rate of TBMs: World Tunnel Congress-Underground Facilities for Better Environment and Safety, India, 1552-1563.
Tsiambaos, G (1991) Correlation of mineralogy and index properties with residual strength of Iraklion marls: Eng. Geol., 30: 357-369.
Verman, M., Singh, B., Viladkar, M. N (1977) Effect of Tunnel Depyh on Modulus of Deformation of Rock Mass, J.L. Jethwa Rock Mech: Rock Engineering, 30 (3): 121-127.
Vernant, P., Nilfouroushan, F., Chery, J., Bayer, R., Djamour, Y., Masson, F., Tavakoli, F (2004) Deciphering oblique shortening of central Alborz in Iran using geodetic data. Earth and Planetary Science Letters, 223(1–2): 177–185.