توصیف مخزن هیدروکربن دار ماسه سنگی F3 (دریای شمال) با استفاده از نشانگرهای لرزه ای و شبکه ی عصبی احتمالاتی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد مهندسی معدن، دانشگاه صنعتی اراک، اراک

2 استادیار گروه مهندسی معدن، دانشگاه صنعتی اراک، اراک

چکیده

اکتشاف ذخایر هیدروکربنی معمولا بر اساس وارون­سازی داده­های لرزه­ای صورت می­گیرد که دارای پیچیدگی­های محاسباتی می­باشد. لذا ارائه روش­های ساده­تر بر مبنای شبکه­های عصبی احتمالاتی می­تواند از این پیچیدگی­ها بکاهد و نیز با توجه به عدم قطعیت کمتر، می­تواند ابزار قدرتمندی برای کارهای اکتشافی باشد. در این مقاله از شبکه­ی عصبی احتمالاتی شعاع مبنا بر اساس قاعده بیز برای تخمین تخلخل مخزن هیدروکربن­دار F3 در دریای شمال استفاده شده است. با توجه به این که محاسبه­ی احتمال درست­نمایی بیز وابسته به پارامتری به نام شاخص نرمی است، در این مقاله با استفاده از روش اعتبارسنجی مقایسه­ای مقدار 21/0 به عنوان شاخص نرمی بهینه انتخاب گردید. بر این اساس به منظور بالا بردن قدرت تفکیک خروجی شبکه عصبی احتمالاتی،  16 بازه­ی تخلخل از 22/0 تا 3/0 انتخاب شد و سه نشانگر لرزه­ای انرژی، شباهت و دامنه لحظه­ای به عنوان ورودی به الگوریتم شبکه عصبی احتمالاتی برگزیده شدند. همچنین روش برازش خطی به منظور تخمین تخلخل میان نشانگرهای ورودی و پارامتر تخلخل به کار گرفته شد. نتایج الگوریتم شبکه عصبی احتمالاتی با نتایج روش برازش خطی در ماتریس هم­آمیختگی مورد مقایسه قرار گرفت که نتایج ماتریس مذکور نشان می­دهد که پارامتر صحت کل برای الگوریتم شبکه عصبی احتمالاتی برابر با 7587/0 و برای معادله­ی برازش خطی مقاومت صوتی برابر با 4623/0 است. علاوه بر این، مقایسه­ی عملکرد دو روش بر روی مقاطع تخمین زده شده نشان می­دهد که شبکه­ی عصبی احتمالاتی می­تواند سازند با تخلخل بیش­تر را که حاوی گاز است، آشکار­سازی نماید. بنابراین با توجه به نتایج به دست آمده، می­توان شبکه­ی عصبی احتمالاتی را به عنوان ابزاری مناسب­تر به منظور تخمین تخلخل سازندها و اکتشاف ذخائر هیدروکربنی نسبت به برازش خطی معرفی نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Reservoir characterization of F3 block (North Sea) using seismic attributes and probabilistic neural network

نویسندگان [English]

  • M. Lashkari Ahangarani 1
  • S. Mojeddifar 2
  • M. Hemmati Chegeni 2
1 M. Sc., (graduated), Dept., of Mining Engineering, Arak University of Technology, Arak
2 Assist. Prof., Dept., of Mining Engineering, Arak University of Technology, Arak
چکیده [English]

Hydrocarbon explorations usually are performed based on seismic inversion techniques in which there exists computational complexity. Therefore, application of simpler methods such as probabilistic neural network could be considered to decrease uncertainties of the results. The present research used a probabilistic neural network to characterize the sand reservoir of F3 block in North Sea. This algorithm applied the seismic attributes of energy, similarity and instantaneous amplitude as input parameters to estimate porosity distribution of the F3 reservoir. Calculating the likelihood probability is dependent on the smoothing parameter. Therefore, the cross validation technique was used to determine the smoothing parameter that equals to 0.21. This paper considered 16 porosity classes from 0.22 to 0.3 as output of probabilistic algorithm. This algorithm calculated the posterior probability for every point in reservoir to determine the class of each point. The maximum posterior probability was selected as the final output. The obtained results were compared with the linear equation driven regression model for acoustic impedance and porosity values. The comparison showed that the developed network could detect gas-bearing region. Also, the confusion matrix was used to validate the results and the total accuracy parameter was calculated as 0.7587 and 0.4623 for probabilistic neural network and linear regression, respectively. Therefore, Bayesian neural network could be introduced as an effective tool to explore the hydrocarbon-bearin layers because of computational complexity of seismic inversion techniques.

کلیدواژه‌ها [English]

  • Probabilistic neural network
  • Energy
  • Similarity
  • Instantaneous amplitude
  • Smoothing parameter
Alimoradi, A., Moradzadeh, A., Bakhtiari, M. R (2012) LEARNING TECHNIQUES. Journal of Seismic Exploration, 21: 323-345.
 Anderson, J. A., Golden, R. M., Murphy, G. L (1986) Concepts in distributed systems. in Optical and hybrid computing. International Society for Optics and Photonics.
Bethe, H. A., Fuchs, K., Hirschfelder, J. O.  Magee, J. L., Neumann, R. V (1958) Blast wave, (No. LA-2000), Los Alamos National Lab, NM.
Graebner, R., Wason, C., Meinar, H (1981) Seismic Explorati. Science, 211: p. 6.
Hampson, D. P., Schuelke, J. S., Quirein, J. A (2001) Use of multiattribute transforms to predict log properties from seismic data. Geophysics, 66(1): 220-236.
Hou, J., Takahashi, T., Katoh, A., Jaroonsitha, S., Chumsena, K., Nakayama, K (2008) Application of seismic attributes and neural network for sand probability prediction-A case study in the North Malay Basin. Bull. Geol. Soc. Malaysia, 54: 115-121.
Lim, J. S (2008) Reservoir properties determination using fuzzy logic and neural networks from well data in offshore Korea. Journal of Petroleum Science and Engineering, 49(3): 182-192.
 Liu, Z., Liu, J (1998) Seismic-controlled nonlinear extrapolation of well parameters using neural networks. Geophysics, 63(6): 2035-2041.
Malvić, T., Prskalo, S (2007) Some benefits of the neural approach in porosity prediction (Case study from Beničanci field). Nafta: exploration, production, processing, petrochemistry, 58(9): 455-467.
 Mao, K. Z., Tan, K. C., Ser, W (2000) Probabilistic neural-network structure determination for pattern classification. IEEE Transactions on neural networks,. 11(4): 1009-1016.
Ribeiro, M. I (2004) Gaussian probability density functions: Properties and error characterization. Institute for Systems and Robotics, Lisboa, Portugal.
Schultz, P. S., Ronen, S., Hattori, M., Corbett, C (1994) Seismic-guided estimation of log properties (Part 1: A data-driven interpretation methodology). The Leading Edge, 13(5): 305-310.
Singh, D., Kumar, P. C., Sain, K (2016) Interpretation of gas chimney from seismic data using artificial neural network: A study from Maari 3D prospect in the Taranaki basin, New Zealand. Journal of Natural Gas Science and Engineering, 36: 339-357.
Sørensen, J. C., Gregersen, U., Breiner, M., Michelsen, O (1997) High-frequency sequence stratigraphy of Upper Cenozoic deposits in the central and southeastern North Sea areas. Marine and Petroleum Geology, 14(2): 99-123.
Soubotcheva, N., Stewart, R. R (2004) Predicting porosity logs from seismic attributes using geostatistics. CREWES Res. Rep,. 16.
 Specht, D. F (1990) Probabilistic neural networks. Neural networks, 3(1): 109-118.
Valenti, J. C. A. F (2009) Porosity prediction from seismic data using multiattribute transformations, N Sand, Auger Field, Gulf of Mexico.
Wilson, D. R., Martinez, T. R (1998) Improved center point selection for probabilistic neural networks. in Artificial Neural Nets and Genetic Algorithms. Springer.