پترولوژی و ژئوشیمی سنگ های پریدوتیتی و گابرویی افیولیت تهلاب، جنوب شرق آتشفشان تفتان

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زمین‌شناسی، دانشکده علوم، دانشگاه سیستان و بلوچستان، زاهدان

چکیده

افیولیت تهلاب در جنوب­شرق آتشفشان تفتان در زون زمین­درز سیستان واقع می­شود. این افیولیت (کرتاسه فوقانی) در داخل مجموعه‌های فلیشی (ائوسن) برونزد دارد. هارزبورژیت­ها و گابروها به عنوان هدف اصلی این مطالعه، بیش­ترین برونزد افیولیت اخیر را تشکیل می­دهند. سنگ­های اولترامافیک از کانی­های الیوین و پیروکسن و سنگ­های گابرویی از کانی­های پیروکسن، پلاژیوکلاز و الیوین ساخته شده‌اند. سرپانتین و کلریت کانی‌های ثانویه تشکیل­دهنده این سنگ­ها هستند. بافت‌های غالب آن‌ها گرانولار، شبکه­ای، افیتیک و ساب افیتیک می­باشند. شیب کلی نمودارهای عنکبوتی عناصر نادر خاکی کم و نسبتا صاف است که نشانگر تهی­شدگی از HREE  و غنی شدگی اندک از LREE در سنگ­های اولترامافیکی و مافیکی از عناصر نادر خاکی نسبت به گوشته غنی شده می­باشد و غالباً روندی مشابه با مورب غنی شده دارند. نمودارهای عناصر انتقالی Ni, Cr, Co, V نسبت به La/Ce نشان می­دهند با افزایش عنصرCo, Ni  میزان La/Ce کاهش یافته که نشان­دهنده تفریق اولیوین می­باشد. عدد منیزیومی بالای نمونه‌ها (86.02-42.91)  نشان می­دهد که ماگمایی سازنده این سنگ­ها از ذوب بخشی گوشته حاصل شده­اند.  هم­چنین  نسبت N(La/Sm) در نمونه­ها در 1.37 تا 0.34 می­باشد که نشان از منشأ گوشته‌ای آن­ها دارد. نمودارهای تکتنوماگمایی حاکی از تعلق این افیولیت به محیط­های کششی حوضه­های درون اقیانوسی است. بنابراین به نظر می­رسد تشکیل این افیولیت مرتبط با فرورانش پوسته اقیانوسی نئوتتیس در کرتاسه بین بلوک­های لوت و افغان باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Petrology and geochemistry of Tahlab ophiolite, northeastern Taftan volcano

نویسندگان [English]

  • H. Biabangard
  • M. Boomeri
  • P. Rigi
چکیده [English]

Tahlab ophiolite is located at the Southeastern of Taftan volcano and the Sistan suture zone. This ophiolite (Upper Cretaceous) exposed in the Flysch zone (Eocene). Harzburgites and gabbro's rocks are main part of this ophiolite that studied in this article. Ultramafic rocks have olivine and pyroxene minerals.  Mafic rocks have plagioclase, pyroxene and olivine minerals. Serpentine and chlorite have secondary minerals. They are dominant granular, ophitic and sub-ophitic textures. All of REE elements in spider diagrams compared to enrichment mantle have low depletion in HREE and low enrichment to LREE, relatively flat slope, and more similar to E-MORB. Transition elements diagrams (V, Co, Cr, Ni) in against to La / Ce ratio show that differentiation of olivine mineral. High Mg number in the samples (42.91 to 86.02) shows that magma resulted from partial melting from mantle. Also (La/Sm) N in the samples are between 1.37 to 0.34 that show they are mantle source.  Tectonomagmatic diagrams shows Tahlab ophiolite has belonging to extensional oceanic intraplate, so it seems this ophiolite formed by subduction of Neothytean oceanic during Cretaceous between Lut and Afghan blocks.

کلیدواژه‌ها [English]

  • Tahlab ophiolite
  • tholeiite
  • subduction
  • Sistan suture zone
  • Taftan
امامعلی­پور، ع.، نظری، ح.، اسمعیل­زاده، م (1399) مروری بر ژئوشیمی و محیط تکتونیکی تشکیل پهنه­های افیولیتی ایران، نشریه یافته­های نوین زمین­شناسی کاربردی، دوره 14، شماره 27، ص 158-171.
رئیسی اردلی، ف (1394) ترکیب شیمیایی سنگ­های اولترامافیک و مافیک افیولیتی در منطقه چاه بریش، شرق ایران. پایان­نامه کارشناسی­ارشد، 105ص.
سبک­روح، م (1394) ترکیب شیمیایی سنگ­های مافیک و اولترامافیک از مجموعه افیولیتی غرب فنوج، شمال مکران ایران. پایان­نامه کارشناسی­ارشد، 97 ص.
عطایی، س (1394) ترکیب شیمیایی سنگ­های اولترامافیک و مافیک افیولیت در منطقه چشمه رضایی- نصرت­آباد، شرق ایران. پایان­نامه کارشناسی­ارشد، 101ص.
قلعه­نوعی، ر (1390) ژئوشیمی و منشأ کرومیت­های پودیفرم از شمال­غرب تا جنوب­غرب زاهدان، جنوب­شرق ایران. 259 ص.
گودرزی، ر (1394) ژئوشیمی پریدوتیت­ها و سنگ­های مافیک منطقه دومک، شرق ایران، پایان­نامه کارشناسی­ارشد.90 ص.
Barragan, R., Geist, D., Hall, M., Larson, P. and Kurz, M (1998) Subduction controls on the composition of lavas from the Ecuadorian Andes. Earth and Planetary Science Letters, 154:153-166.
Delaloye M. and Desmons, J (1980) Ophiolites and mélange terranes in Iran: A geochronological study and its paleotectonic implications. Tectonophysics, 68: 83-11.
Delavari, M (2013) Different geodynamic settings for Sistan suture zone ophiolitic units: discussion of textural evidences and mineral chemistry of crustal sequence ultramafic-mafic associations. Petrology, 4:39-58.
Fitton, GJ. James, D., and Leeman, WP (1991) Basic magmatism associated with late Cenozoic in the western United State, compositional variations in space and Time. Journal Geophysical Research, 4: 96-86.
Hafman, AW (1988) Chemical differentiation of the earth the relationship between mantle, continental curst and oceanic crust. Earth and Planetary Science Letters, 16: 90-68.
Hafman, AW (2003) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In: RW Carlson, Ed. Elsevier- Pergamon, Oxford, 42: 61-101.
Le Bas, MJ., Le Maiter, RW., Streckeisen, A. and Zanetti, B (1986) A chemical classification of volcanic rocks based on the total alkali- silica diagram. Journal of Petrology, 27: 745-750.
Martin, H (1993) The mechanism of petrogenesis of the Archean continental crust comparison with modern processes. Lithos, 30: 373–388.
Middlemost, E. A. K (1994) Naming materials in the magma/igneous rock system. Earth Science,
37: 215-224.
Niu, Y (2004) Bulk- rock major and trace element composition of abyssal peridotites, implications for mantle melting, melt extraction and post- melting processes beneath Mid-Ocean Ridges. Journal of Petrology, 45: 2423–2458.
Odinga, M., Lioyd, B., Squire, P., Griffiths, and Cormic, P. M (1978) Geological Quadrangle map of Naranow 1:250000. Geological Survey of Iran.
Paulick, H., Bach, W., Godard, M., Hoog, C. J, Suhr, G., and Harvey, J (2006) Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments. Chemical Geology, 234: 179210.
Pearce, JA (1981) Statically analysis of major element patterns in basalt. Journal of Petrology, 17: 15-43.
Saccani E., Delavari M., Beccaluva L. and Amini S (2010) Petrological and geochemical
constraints on the origin of the Nehbandan ophiolitic complex (eastern Iran): Implication for the evolution of the Sistan Ocean. Lithos, 117: 209-228.
Shervais, J. W (1982) Ti-V plots and the petrogenesis of modern and ophiolite lavas. Earth and Planetary Science Letters, 57: 101-108.
Snow, J. E., and Dick H. J. B (1995) Pervasive magnesium loss by marine weathering of peridotite. Geo Cosmo Acta 59, 20:4219–4235.
Srivastava, RK. and Singh, RK (2004) Trace element geochemistry and genesis of Precambrian subalkaline mafic dikes from the Indian craton: Evidence for mantle metasomatism. Journal of Asian Earth Sciences, 23: 373-389.
Sun, SS. and McDonough, WF (1989) Chemical and isotope systematics of oceanic basalts: implication for mantle composition processes. In: Saunders AD, Norry MJ (Eds.), Magmatism in the ocean basins: Geological Society Special Publication, 313-345.
Tirrul, R., Bell, I. R., Griffis, R. J. and Camp, V. E (1983) The Sistan suture zone of eastern
Iran. Geological Society of America Bulletin, 94: 134-150.
Uysal, I. E., Yalcin, E., Karsli, O., Delik, Y., Burhan, Sadiklar, M., Ottley, C.J., Tiepolo, M., and Meisel. T (2012) Coexistence of abyssal and ultra- depleted SSZ type mantle peridotites in a Neo- Tethyan Ophiolite in SW Turkey: Constraints from mineral composition, whole-rock geochemistry (major-trace-REE-PGS) and Re-Os isotope systematic. Lithos,132-133: 50-69.
Whitney JA. and Evance, F (2010) Abbreviations for names of rock-forming minerals.
American Mineralogist, 95: 185–187.
Wilson, M (1993) Igneous Petrogenesis, a global tectonic approach. Chapman and Hall, 466p.
Winter, J (2010) An introduction to igneous and metamorphic petrology. Pearson Prentice Hall, 702p.