تحلیل جریان های گرانشی رسوبی با نگرشی ویژه بر توربیدایت ها

نوع مقاله : مقاله پژوهشی

نویسنده

گروه زمین شناسی، دانشکده علوم پایه، دانشگاه بوعلی سینا، همدان

چکیده

جریان­های گرانشی رسوبی بر اساس ترکیب پنج شاخص غلظت رسوبات، مکانیسم تامین رسوبات، حالت جریان (خطی یا آشفته)، نوع جریان و تغییر شکل آن طبقه­بندی می­شوند. این نوع جریان­ها از سیال­های نیوتونی (نظیر جریان توربیدایتی) و یا از سیال­های غیر نیوتونی (نظیر جریان خرده­دار) تشکیل شده است. با این وجود، شناسایی نوع و تغییر شکل جریان توسط بررسی نهشته­های آن­ها به راحتی امکان­پذیر نیست. اگرچه با قطعیت برخی سنگ­ها جز توربیدایت­ها و برخی دیگر جز دبریت­ها (نهشته­های خرده­دار) طبقه­بندی می­شوند، حالت حد واسطی از این نوع سنگ­ها تحت عنوان دنسیت­ها (نهشته­های جریان متراکم) نیز وجود دارد. دنسیت­ها ویژگی­های دوگانه توربیدایت­ها و دبریت­ها را از خود نشان می­دهند. دنسیت­ها دارای حالت ترکیبی سیال­های نیوتونی و غیرنیوتونی هستند. واژه گراویت برای تمام نهشته­های گرانشی رسوبی بدون در نظر گرفتن محیط رسوبی­شان به کار برده می­شود. امروزه، جریان­های توربیدایتی برای جریان­های گرانشی رسوبی نیوتونی به کار گرفته می­شود. این نوع جریان­های نیوتونی برخلاف سایر جریان­ها به علت سقوط و رسوب متفاوت ذرات از بخش تحتانی تا بخش فوقانی رسوبات دارای دانه­بندی تدریجی می­باشند (نظیر توالی بوما). سیستم­های توربیدایتی بر مبنای اندازه ذرات (غنی از گل، غنی از گل/ماسه، غنی از ماسه و غنی از گراول)، ترکیب رسوب (توربیدایت آهکی و توربیدایت آواری) و سیستم تغذیه­کننده (مخروط زیر­دریایی با منشا نقطه­ای، رمپ با منشا چند­گانه و پیشانی شیب با منشا خطی) طبقه­بندی می­شوند. سیستم­های توربیدایتی غنی از گل دانه­ریز عمدتا در حوضه­های با ورودی رودخانه­ای بزرگ ایجاد می­شوند. می­توان از نهشته­های توربیدایتی آهکی در ایران از سازند­های پابده و سروک (حوضه زاگرس) و  توربیدایت­های آواری از بخش آواری سازند امیران و نهشته­های آواری میوسن نام برد.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of sediment gravity flows with special view on turbidites

نویسنده [English]

  • R. Behbahani
چکیده [English]

Sediment gravity flows are categorized based on combination of five parameters: sediment concentration, sediment-support mechanism, flow state (laminar or turbulent) and rheology (flow type and its deformation). Except for rheology, all of these parameters change gradationally from one member to another. Therefore, rheological classification of sediment gravity flows should be the most straightforward and the least controversial. These flows can be either Newtonian (i.e., turbidity currents), or non-Newtonian (i.e., debris flows). However, identification of flow rheology by examining the deposits may not be easy. Although we may confidently identify some rocks as turbidites and others as debrites, there are some transitional deposits, here called densites. Densites share both the characteristics of turbidites and debrites. Densites are the deposits of dense flows, which are rheologically stratified flows having a composite rheology of Newtonian fluids and non-Newtonian fluids. The term gravite is proposed for deposits of any kind of sediment gravity flow, irrespective of their depositional environment. Nowadays, turbidity currents only for sediment gravity flows with Newtonian rheology. These types of currents with Newtonian rheology, unlike other currents, should produce a diagnostic distribution grading (due to differential grain settling) from the bottom to the top of the deposits (i.e., Bouma sequence). Turbidite systems are classified based on grain size (mud-rich, mud/sand-rich, sand-rich and gravel-rich), sediment composition (calciturbidite and siliciclastic turbidite) and feeder system) submarine fan with point source, ramp with multiple source and slope apron with linear source).  Fine-grained, mud-rich turbidite systems mainly occur in basins with a large fluvial input. The calciturbidites and siliciclastic turbidites in Iran can be named Pabdeh and Sarvak Formations (Zagros Basin), terrigenous part of Amiran Formation and Miocene siliciclastic deposits, respectively.

کلیدواژه‌ها [English]

  • Sediment gravity flows
  • Turbidite
  • Densite
  • Debrite
  • Gravite
بهبهانی، ر.، محسنی، ح.، خدابخش، س.، آتش­مرد، ز (1390) شواهد رسوبات توفانی و توربیدایتی در سازند پابده، شمال و جنوب باختر حوضه زاگرس. پژوهش­های چینه­نگاری و رسوب­شناسی، شماره 42، ص 73-96.
سراوانی، س.، گرگیج، م. ن.، قماشی، م.، احمدی، ع (1396) تجزیه و تحلیل ریز­رخساره­ای، محیط­های رسـوبی و چینه­نگاری سکانسی سازند پابده در برش نمونه، زاگرس. پژوهش­های چینه­نگاری و رسوب­شناسی، شماره 69، ص 69-104.
غلامی­زاده، پ.، آدابی، م. ح.، حسینی­برزی، م.، صادقی، ع.، قاسمی، م. ر (1395) بازسازی محیط رسوبی نهشته­های آواری میوسن حوضه رسوبی زاگرس در برش­های کوه آسکی و هورگان، گستره نیریز، حوضه زاگرس. فصل­نامه علوم زمین، شماره 101، ص 23-34.
محسنی، ح.، جوانمرد، ر. ا (1397) ریزرخساره­ها و محیط رسوبی سازند سروک در برش تنگ باولک و شاهنخجیر، شهرستان ملک­شاهی (ایلام). پژوهش­های چینه­نگاری و رسوب­شناسی، شماره 71، ص 43-68.
محسنی، ح.، طولابی، م.، یوسفی­یگانه، ب.، خدابخش، س (1392) شواهد رسوبی جریان توربیدایتی در سازند امیران در جنوب باختر لرستان. هفدهمین همایش انـجمن زمین­شناسی ایران، دانشگاه شهید بهشتی، 9 ص.
نصیری، ی.، محبوبی، ا.، موسوی حرمی، ر.، خزایی، ا. ر.، یوسفی­یگانه، ب (1392) بازسازی محیط رسوبی رسوبات سیلیسی آواری-کربناته سازند امیران (کرتاسه بالایی-پالئوسن) در جنوب­باختر لرستان. فصل­نامه زمین­شناسی ایران، شماره 27، ص 55-74.
Abdi, A., Mahmudi-Gharaie, M. H., Badenas, B (2014) Internal wave deposits in Jurassic Kermanshah pelagic carbonates and radiolarites (Kermanshah area, West Iran). Sedimentary Geology, 314: 47-59.
Allen, P. A (1997) Earth surface processes. Blackwell, London, 404 pp.
Alvarez, M. I. D. P., Alonso, J. L., Fernandez, L. P (2019) Gravity driven structures and deposits resulting from slope collapse in the margin of a carbonate platform (NW Iberia). Journal of Structural Geology, 119: 15-32.
Baas, J. H (2004) Conditions for formation of massive turbiditic sandstones by primary depositional processes. Sedimentary Geology, 166: 293-310.
Baas, J. H., Best, J. L (2002) Turbulence modulation in clay-rich sediment laden flows and some implications for sediment deposition. Journal of Sedimentary Research, 72: 336-340.
Berra, F (2007) Sedimentation in shallow to deep water carbonate environmens across a sequence boundary: effects of a fill in sea-level on the evolution of a carbonate system (Ladinian-Carrnian, eastern Lombardy, Italy). Sedimentology, 54: 721-735.
Betzler, C., Brachert, T. C., Kroon, D (1995) Role of climate in partial drowning of the Queensland plateau carbonate platform (northeastern Australia). Marine Geology, 123: 11-32.
Bouma, A. H (1962) Sedimentology of some flysch deposits: a graphic approach to facies interpretation, Elsevier, Amsterdam, 168 pp.
Bouma, A. H (2000) Fine-grained, mud-rich turbidite systems: model and comparison with coarse-grained, sand-rich systems. In: Bouma, A. H., Stone, C. G (eds.), Fine-grained turbidite systems. AAPG Memoir 72/SEPM Special Publication 68, p. 9-19.
Bouma, A. H., Normark, W. R., Barnes, N. E (1985) Submarine fans and related turbidite systems. Springer-Verlag, New York, 351 pp.
Bouma, A. H., Stone, (eds.) (2000) Fine-grained turbidite system. American Association of Petroleum Geologists, Memoir 72, 342 pp.
Bromley, R. G (1990) Trace fossils: biology and taphonomy. Academic Division of Unwin Hyman Ltd., Boston, 280 pp.
Burg, J. P., Dolati, A., Bernoulli, D., Smit, J (2012) Structural style of the Makran Tertiary accretionary complex in SE Iran. In: Al-Hosani, K., Roure, F., Ellison, R., Lokier, S., (eds.), Lithosphere dynamics and sedimentary basins: the Arabian Plate and analogues. Springer-Verlag, Heidelberg, p. 239-259.
Cantalejo, B., Pickering, K. T (2014) Climate forcing of fine grained deep-marine system in an active tectonic setting: Middle Eocene, Ainsa Basin, Spanish Pyrenees. Palaeo, 410: 351-371.
Coniglio, M., Dix, G. R (1992) Carbonate slopes. In: Walker, R. G., James, N. P., (eds.), Facies models: response to sea level change. Geological Association of Canada, p. 349-374.
Corella, J. P., Loizeau, J. L., Kremer, K., Hilb, M. and et al (2016) The role of mass-transport deposits and turbidites in shaping modern lacustrine deepwater channels, Marine and Petroleum Geology, 77: 515-525.
Dolati, A (2010) Stratigraphy, structural geology and low-temperature thermochronology across the Makran accretionary wedge in Iran. PHD thesis, Swiss Institute of Technology, Zurich, 311 pp.
Dott, R. H (1963) Dynamics of subaqueous gravity depositional processes. American Association of Petroleum Geologists, Bulletin, 47: 104-128.
Eberli, G. P (1987) Calcareous turbidites and their relationship to sea-level fluctuations and tectonism. In: Einsele, G., Ricken, W., Seilacher, A., 1991, (eds.), Cycles and events in stratigraphy. Springer-Verlag, Berlin, p. 340-359.
Everts, A. J. W (1991) Interpreting compositional variations of calciturbidites in relation to platform stratigraphy: an example from the paleogene of SE Spain. Sedimentary Geology, 71: 231-242.
Everts, A. J. W., Schalger, W., Reijmer, J. J. G (1999) Carbonate platform to basin correlation by means of grain composaition logs: an example from thr Vercors (Cretaceous, SE France). Sedimentology, 46: 261-278.
Fan, A., Yang, R., Van-Loon, A. J., Yin, W., Han, Z., Zavala, C (2018) Classification of gravity-flow deposits and their sinsignificancer unconventional petroleum exploration, with a case study from the Triassic Yanchang Formation (China). Journal of Asian Earth Sciences, 161: 57-73.
Floquet, M., Hennuy, J (2003) Evolutionary gravity flow deposits in the Middle Turonian-Early Coniacin Southern Provence Basin (SE France): Origins and depositional processes. In: Locat, J., Mienert, J. (eds.), submarine mass movements and their consequences 19. Kluwer Academic Publishers, Dordrecht, the Netherlands, p. 417-424.
Flugel, E (2010) Microfacies of carbonate rocks: analysis, interpretation and application (2nd edition). Springer-Verlag, Berlin, Heidelberg, 984 pp.
Gani, M. R (2003) Crisis for a general term referring to all types of sediment gravity flow deposits: grevite. Geological Society of America, Abstracts with Programs, 34: 171.
Gani, M. R (2004) From turbid to lucid: a straightforward approach to sediment gravity flows and their deposits. The Sedimentary Record, 2: 4-8.
Gladstone, C., Phillips, J. C., Sparks, R. S. J (1998) Expriments on bidisperse, constant-volume gravity currents: propagation and sediment deposition. Sedimentology, 45: 833-843.
Groen, R. D (2008) Origin of tectonically induced calcite debris flows (Cretaceous, Southern Provence Basin, France). (Bachlor thesis) VU University Amsterdam, Amsterdam, 33 pp.
Hampton, M. A (1975) Competence of fine-grained debris flows. Journal of sedimentary Petrology, 45: 834-844.
Horikawa, K., Ito, M (2009) Non-uniform across-shelf variations in thickness, grain size, and frequency of turbidites in a transgressive outer-shelf, the Middle Pleistocene Kakinokidai Formation, Boso Peninsula, Japan. Sedimentary Geology, 220: 105-115.
Ito, M (2019) Lithofacies architecture of gravel-wave deposits: insights into the origins of coarse-grained gravity-flow deposits. Sedimentary Geology, 382: 35-46.
Kneller, B. C., and Branney, M. J (1995) Sustained high-density turbidity currents and the deposition of thick massive sands. Sedimentology, 42: 231-258.
Liu, F., and et al (2015) Sedimentary characteristics and facies model of gravity flow deposits of Late Triassic Yan-Chang Formation in Southwest in Ordos Basin, NW China. Petroleum Exploration and Development, 42: 633-645.
Lowe, D. R (1982) Sediment gravity flows, II. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology, 52: 279-297.
Lowe, D. R., Guy, M (2000) Slurry-flows deposits in the Britanian Formation (Lower Cretaceous), North Sea: a new perspective on the turbidity current and debris flow problem. Sedimentology, 47: 31-70.
Miall, A. D (2006) The geology of fluvial deposits: sedimentary facies, basin analysis, and petroleum geology (4th edition). Springer, Berlin, 582 pp.
Middleton, G. V., Hampton, M. A (1973) Sediment gravity flows: mechanics of flow and deposition. In: Middleton, G. V., Bouma, A. H., (eds.), Turbidites and deep water sedimentation. Proceedings of Pacific Section Society of Economic Paleontologists and Mineralogists, Los Angeles, p. 1-38.
Mohammadi, A., Burg, J. P., Bouilhol, P., Ruh, J (2016) U-Pb geochronology and geochemistry of Zahedan and Shah-Kuh plutons, southeast Iran: implication for closure South Sistan suture zone. Lithos, 248 (251): 293-308.
Mohseni, H., Behbahani, R., Khodabakhsh, S., Atashmard, Z (2011) Depositional rnvironments and trace fossil assemblages in the Pabdeh Formation (Paleogene), Zagros Basin, Iran. N. Jb. Geol. Palaont. Abh, 262: 59-77.
Mulder, T., Syvitski, J. P. M., Migeon, S., Faugeres, J. C., Savoye, B (2003) Marine hyperpycnal flows: initiation, behavior and related deposits, a review. Marine and Petroleum Geology, 20: 861-882.
Mutti, E (1992) Turbidite sandstones. Special Publication, Agip, Milan, 275 pp.
Mutti, E., Normark, W. R (1991) An integrated approach to the study of turbidite systems. In: Weimer, P., Link, M. H., (eds.), Seismic facies and sedimentary processes of submarine fans and turbidite systems. Springer-Verlag, New York, p. 75-106.
Nichols, G (2009) Sedimentology and stratigraphy (2nd edition). Chichester, UK; Blackwell Science, 432 pp.
Payros, A., Pujalt, v (2001) Calciclastic submarine fans: an integrated overview. Earth Science Reviews, 86: 203-246.
Pickering, K. T., Corregidor, J (2005) Mass-transport complexes and tectonic control on basin floor submarine fans, Middle Eocene, South Spanish Pyrenees. Journal of Sedimentary Research, 75: 761-783.
Quiquerez, A., Sarih, S., Allemand, P., Garcia, J. P (2013) Fault rate controls on carbonate gravity-flow deposits of the Liassic of central High Atlas (Morocco). Marine and Petroleum Geology, 43: 349-369.
Ragusa, J., Kindler, P (2018) Compositional variations in deep-sea gravity flow deposits. A case study from the Voirons Flysch (France). Sedimentary Geology, 377: 111-130.
Reading, H. G., Richards, M (1994) turbidite systems in deep water basin margins classified by grain size and feeder system. AAPG Bulletin, 78: 792-822.
Reijmer, J. J. G (1998) Compositional variations during phases of progradation and retrogradation of a Triassic carbonate platform (Picco di Vallandro/Durrenstein, Dolomites, Italy). Geoloische Rundschau, 87: 436-448.
Reijmer, J. J. G., Palmieri, P., Groen, R (2012) Compositional variations in calciturbidites and calcidebrites in response to sea level fluctuations (Exuma Sound, Bahamas). Facies, 58 (4): 493-507.
Reijmer, J. J. G., Pamieri, P., Groen, R., Floquet, M (2014) Calciturbidites and calcidebrrites: Sea-level variations or tectonic processes?. Sedimentary Geology, 317: 53-70.
Reijmer, J. J. G., Schalger, W., Bosscher, H., Beets, C. J., Mc Neill, D. F (1992) Pliocene/Pleistocene platform facies transition recorded in calciturbidites (Exuma Sound, Bahamas). Sedimentary Geology, 78: 171-179.
Rubert, Y., Jati, M., Loisy, C., Cerepi, A., Foto, G., Muska, K (2012) Sedimentology of resedimented carbonates: facies and geometrical charaterisation of an upper Cretaceous calciturbidite system in Albania. Sedimentary Geology, 257 (260): 63-77.
Sanders, J. E (1965) Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms, In: Middleton, G. V., (eds.), Primary sedimentary structures and their hydrodynamic interpretation. Society of Economic Paleontologists and Mineralogists Special Publication, 12: 192-219.
Savary, B., Ferry, S (2004) Geometry and petrophysical parameters of a calcarenitic turbidite lobe (barremian-Aptian, Pas-de-La-Cluse, France), Sedimentary Geology, 168: 281-304.
Shanmugam, G (1996) High–density turbidity currents: are they sandy debris flows? Journal of Sedimentary Research, 66: 2-10.
Shanmugam, G (1997) The bouma sequence and the turbidite mind set. Earth Science Reviews, 42: 201-229.
Shanmugam, G (2012) Bottom-current reworked sands. In: Shanmugam, G., (eds.), new perspectives on deep-water sandstones: origin, recognition, initiation, and reservoir quality. Elsevier, Amsterdam, p.129-219.
Stelting, Ch. E., Bouma, A. H., Stone, Ch. G (2000) Fine-grained turbidite systems: overview. In: Bouma, A. H., Stone, C. G (eds.), Fine-grained turbidite systems. AAPG Memoir 72/SEPM Special Publication, 68: 1-8.
Tinterri, R., Drago, M., Consonni, A., Davoli, G., Mutti, E (2003) Modeling subaqueous bipartite sediment gravity flows on the basis of outcrop constraints: first results. Marine and Petroleum Geology, 20: 911-933.
Tucker, M. E (1994) Sedimentary Petrology (2nd edition). Blackwell, 272 pp.
Williams, G. P (1967) Flume experiments on the transport of a coarse sand: sediment transport in alluvial channels. Geological Survey Professional Paper 562-B, United States Government Printing Office, Washington, 31 pp.
Yang, P., et al (2017) Lithofacies and origin of the Late Triassic muddy gravity-flow deposits in the Ordos Basin, Central China. Marine and Petroleum Geology, 85: 194-219.
Zavala, C., Arcuri, M (2016) Intrabasinal and extrabasinal turbidites: origin and distinctive characteristics. Sedimentary Geology, 337: 36-54.