اینانلوعربی شاد، ح. سرشکی، ف. عطایی، م. بزرگمهر، س. اکبری نسب، ل (1395) بررسی تاثیر پودر مگنتیت (اکسید آهن) بر خواص نکانیکی بتن خودمتراکم، نشریه علمی و ترویجی مصالح و سازههای بتنی، انجمن علمی بتنی ایران، سال اول، شماره دوم، ص 83-102.
حبیبی، س. نیل فروشزاده حسین، ن. و قربانی شبستری، س (1388) بررسی الیاف پلیپروپیلن بر روی استحکام و مقاومت حرارتی بتن، مجله علمیپژوهشی علوم و تکنولوژی نساجی، سال چهارم، شماره دوم، ص 53-61.
هاشمی، ح. و نوروزی ارکوینی، ع (1394) بررسی اثرات افزایش دما بر عملکرد بتن سبک سازهای حاوی درصدهایی از نانوسیلیس، تحقیقات بتن، سال هشتم، شماره اول، ص 55-69.
صدری ممتازی، ع طهورثی، م. نصرتی، ح (1392) ارزیابی خصوصیات بتنالیافی حاوی سنگدانههای بازیافتی با استفاده از روشهای غیرمخرب، مجله تحقیقات بتن، سال ششم، شماره اول، ص 73-76.
باغبدرانی، م. و کردی، م. و چابکی خیابانی، ع. و بسطامی، م (1390) مطالعه آسیبپذیری بتن مقاومت بالا در برابر حرارتهای بالا و تاثیر کاربرد الیاف پلیپروپیلن، ششمین گنگره مهندسی عمران دانشگاه سمنان.
حجازی، م. و هاشمی، م. و باتوانی، م (1392) تاثیر الیاف فولادی بر خصوصیات مکانیکی و عملکرد در مقابل حرارت و یخزدگی بتن سبک خودتراکم، تحقیقات بتن، سال ششم، شماره اول، ص 47-63.
ASTM, C (2012) Standard test method for compressive strength of cylindrical concrete specimens.
ASTM, E "648" (2003) Standard Test Method for Critical Radiant Flux of Floor-Covering Systems Using a Radiant Heat Energy Source.
Ayudhya, N and Israngkura, B (2011) Compressive and splitting tensile strength of autoclaved aerated concrete (AAC) containing perlite aggregate and polypropylene fiber subjected to high temperatures, Songklanakarin Journal of Science & Technology, 33.
Behnood, A. and Ghandehari M (2009) Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures, Fire Safety Journal, 44(8): 1015-1022.
Behnood, A. and Ziari, H (2008) Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures, Cement and Concrete Composites, 30(2): 106-112.
Breitenbucker, R. (1996) High Strength Concrete C105 with Increased Fire-Resistance due to Polypropylene Fibers, Utilization of High Strength/High Performance Concrete 29-31 May1996, Paris, France, 571-577.
Chen, B. and Liu, J (2004) Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures, Cement and Concrete Research 34(6): 1065-1069.
Diederichs, U (1995) High Temparature Properties and Spalling Behavior of High Strength Concrete, Proceedings of the Fourth Weimar Workshop on High Performance Concrete: Material Properties and Design, 10: 219-235.
Drzymała, T., Jackiewicz-Rek, W., Tomaszewski, M., Kuś, A., Gałaj, J., Šukys, R (2017) Effects of high temperature on the properties of high performance concrete (HPC), Procedia Engineering, 172: 256-263.
Grattan-Bellew, P (1996) Microstructural investigation of deteriorated Portland cement concretes, Construction and building materials, 10(1): 16-30.
Hager, I. and Tracz, T (2010) The Impact of the Amount and Length of Fibrillated Polypropylene Fibres on the Properties of HPC Exposed to High Temperature/Wpływ Ilosci I Długosci Fibrylowanych Włókien Polipropylenowych Na Własciwosci Hpc Poddanego Działaniu Wysokiej Temperatury, Archives of Civil Engineering, 56(1): 57-68.
Husem, M (2006) The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete, Fire Safety Journal, 41(2): 155-163.
Kalifa, P., Chene, G, and Galle, C (2001) High-temperature behaviour of HPC with polypropylene fibres: From spalling to microstructure, Cement and concrete research, 31(10): 1487-1499.
Khoury, G (1992) Compressive strength of concrete at high temperatures: a reassessment, Magazine of concrete Research, 44(161): 291-309.
Lennon, T. and Clayton, N (1999) Fire tests on high grade concrete with polypropylene fibres, 5th International Symposium on the Utilisation of High Strength/High Performance Concrete, Savdejord, Norway.
Morsy, M., Al-Salloum, Y., Abbas, H., Alsayed, S (2012) Behavior of blended cement mortars containing nano-metakaolin at elevated temperatures, Construction and Building materials, 35: 900-905.
Nishida, A (1995) Study on the properties of high strength concrete with short polypropylene fiber for spalling resistance, Int. Conf. on Concrete under Severe Conditions, Sapporo.
Nonnet, E., Lequeux N., Boch, P (1999) Elastic properties of high alumina cement castables from room temperature to 1600C, Journal of the European Ceramic Society, 19(8): 1575-1583.
Othuman, M. A. and Wang, Y (2011) Elevated-temperature thermal properties of lightweight foamed concrete, Construction and Building Materials, 25(2): 705-716.
Sarvaranta, L., Elomaa M., Järvelä, E (1993) A study of spalling behaviour of PAN fibre‐reinforced concrete by thermal analysis, Fire and materials, 17(5): 225-230.
Sarvaranta, L. and Mikkola, E (1994) Fibre mortar composites in fire conditions, Fire and materials, 18(1): 45-50.
Sarvaranta, L. and Mikkola, E (1994) Fibre mortar composites under fire conditions: effects of ageing and moisture content of specimens, Materials and Structures, 27(9): 532-538.
Schneider, U (1976) Behaviour of concrete under thermal steady state and non‐steady state conditions, Fire and Materials, 1(3): 103-115.
Siddique, R. and Kaur, D (2012) Properties of concrete containing ground granulated blast furnace slag (GGBFS) at elevated temperatures, Journal of Advanced Research, 3(1): 45-51.
Tanyildizi, H. and Coskun A (2008) The effect of high temperature on compressive strength and splitting tensile strength of structural lightweight concrete containing fly ash, Construction and building materials, 22(11): 2269-2275.
Walraven, J. C. and Stoelhorst, D (2008) Tailor Made Concrete Structures: New Solutions for our Society, (Abstracts Book 314 pages+ CD-ROM full papers 1196 pages).
Xiao, J. and Falkner, H (2006) On residual strength of high-performance concrete with and without polypropylene fibres at elevated temperatures, Fire safety journal, 41(2): 115-121.
Zhou, Q. and Glasser, F. P (2001) Thermal stability and decomposition mechanisms of ettringite at< 120 C, Cement and Concrete Research, 31(9): 1333-1339.