اثر چرخه های حرارتی روی خواص فیزیکی و مکانیکی بتن الیافی و مقایسه آن با بتن بدون الیاف

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی معدن، دانشگاه بین‌المللی امام خمینی (ره)، قزوین

چکیده

سنگ‌ها در مواردی از قبیل انفجار و آتش­سوزی تحت حرارت قابل­توجهی قرار می‌گیرند و  بر اثر خاموش کردن آتش سرد می‌شوند و فرآیند گرمایش- سرمایش اتفاق می‌افتد. در این مقاله هدف بررسی اثر دما در یک سیکل گرمایش- سرمایش روی خواص فیزیکی و مکانیکی بتن الیافی است. در مرحله گرمایش در یک سیکل گرمایش- سرمایش، آزمایش روی نمونه‌هایی که در معرض دمای 300، 500 و700 درجه سانتی­گراد قرار داده شده و سپس در دمای محیط به تدریج سرد شده­اند انجام شد. یک سری آزمایش نیز روی نمونه‌هایی که سیکل گرمایش- سرمایش را تحمل نکرده­اند اجرا شد. برای این منظور نمونه‌های بتن بدون الیاف، بتن با الیاف پلی­پروپیلن و بتن با الیاف شیشه ساخته شد. این مقاله به بررسی اثر فرآیند گرمایش- سرمایش بر تخلخل موثر، سرعت امواج طولی، مقاومت فشاری تک­محوره، مقاومت کششی بتن الیافی پلی­پروپیلن و شیشه و مقایسه آن با بتن بدون الیاف می‌پردازد. نتایج نشان می‌دهد که بتن الیافی دارای  5/0 درصد الیاف شیشه در دمای 300 درجه سانتی­گراد دارای بیش­ترین مقدار مقاومت کششی و فشاری و بتن الیافی دارای  5/0 درصد الیاف پلی­پروپیلن در دمای 500 درجه سانتی­گراد دارای بیش­ترین مقاومت فشاری و در دمای 700 درجه سانتی­گراد دارای بیش­ترین مقاومت کششی در  بین  انواع بتن‌های غیرالیافی و الیافی با درصدهای متفاوت از الیاف می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of thermal cycles on physical and mechanical properties of fiber concrete as compared with non-fiber concrete

نویسندگان [English]

  • M. Hosseini
  • Sh. Latifi
  • M. Hatami
چکیده [English]

In the case of explosions and fires, the rocks undergo cycles of heating and cooling, that is, they are exposed to considerable heat first and then cooled after extinguishing the fire. The purpose of this paper is to study how the temperature in a heating-cooling cycle can affect the physical and mechanical properties of fiber concrete (FC). During the heating phase in a heating-cooling cycle, experiments were performed on samples that were initially exposed to temperatures of 300, 500 and 700 °C and then cooled gradually to ambient temperature. At the same time, a series of experiments were performed on samples that were not exposed to a heating-cooling cycle. For this purpose, non-fiber concrete (NFC), polypropylene fiber concrete (PFC) and glass fiber concrete (GFC) samples were fabricated. The effect of the heating-cooling process on effective porosity, longitudinal waves velocity, uniaxial compressive strength, and tensile strength of PFC and GFC samples were investigated and compared with the NFC samples. The results show that fiber concrete containing 0.5% glass fiber has the highest tensile and compressive strength at 300 ° C. Fiber concrete containing 0.5% polypropylene fiber at 500 ° C has the highest compressive strength and at 700 ° C has the highest tensile strength among all types of non-fiber and fiber concrete with different percentages of fibers.

کلیدواژه‌ها [English]

  • Fiber concrete (FC)
  • non-fiber concrete (NFC)
  • fire
  • physical properties
  • mechanical properties
اینانلوعربی شاد، ح. سرشکی، ف. عطایی، م. بزرگمهر، س. اکبری نسب، ل (1395) بررسی تاثیر پودر مگنتیت (اکسید آهن) بر خواص نکانیکی بتن خودمتراکم، نشریه علمی‌ و ترویجی مصالح و سازه‌های بتنی، انجمن علمی ‌بتنی ایران، سال اول، شماره دوم، ص 83-102.
حبیبی، س. نیل فروش­زاده حسین، ن. و قربانی شبستری، س (1388) بررسی الیاف پلی­پروپیلن بر روی استحکام و مقاومت حرارتی بتن، مجله علمی‌پژوهشی علوم و تکنولوژی نساجی، سال چهارم، شماره دوم، ص 53-61.
هاشمی، ح. و نوروزی ارکوینی، ع (1394) بررسی اثرات افزایش دما بر عملکرد بتن سبک سازه­ای حاوی درصد‌هایی از نانوسیلیس، تحقیقات بتن، سال هشتم، شماره اول، ص 55-69.
صدری ممتازی، ع طهورثی، م. نصرتی، ح (1392) ارزیابی خصوصیات بتن­الیافی حاوی سنگدانه‌های بازیافتی با استفاده از روش‌های غیرمخرب، مجله تحقیقات بتن، سال ششم، شماره اول، ص 73-76.
باغبدرانی، م. و کردی، م. و چابکی خیابانی، ع. و بسطامی، م (1390) مطالعه آسیب­پذیری بتن مقاومت بالا در برابر حرارت‌های بالا و تاثیر کاربرد الیاف پلی­پروپیلن، ششمین گنگره مهندسی عمران دانشگاه سمنان.
حجازی، م. و‌ هاشمی، م. و باتوانی، م (1392) تاثیر الیاف فولادی بر خصوصیات مکانیکی و عملکرد در مقابل حرارت و یخ­زدگی بتن سبک خودتراکم، تحقیقات بتن، سال ششم، شماره اول، ص 47-63.
ASTM, C (2012) Standard test method for compressive strength of cylindrical concrete specimens.
ASTM, E "648" (2003) Standard Test Method for Critical Radiant Flux of Floor-Covering Systems Using a Radiant Heat Energy Source.
Ayudhya, N and  Israngkura, B (2011) Compressive and splitting tensile strength of autoclaved aerated concrete (AAC) containing perlite aggregate and polypropylene fiber subjected to high temperatures, Songklanakarin Journal of Science & Technology, 33.
Behnood, A. and  Ghandehari M (2009) Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures, Fire Safety Journal, 44(8): 1015-1022.
Behnood, A. and  Ziari, H (2008) Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures, Cement and Concrete Composites, 30(2): 106-112.
Breitenbucker, R. (1996) High Strength Concrete C105 with Increased Fire-Resistance due to Polypropylene Fibers, Utilization of High Strength/High Performance Concrete 29-31 May1996, Paris, France, 571-577.
Chen, B. and  Liu, J (2004) Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures, Cement and Concrete Research 34(6): 1065-1069.
Diederichs, U (1995) High Temparature Properties and Spalling Behavior of High Strength Concrete, Proceedings of the Fourth Weimar Workshop on High Performance Concrete: Material Properties and Design, 10: 219-235.
Drzymała, T.,  Jackiewicz-Rek, W., Tomaszewski, M.,  Kuś, A.,  Gałaj, J.,   Šukys, R (2017) Effects of high temperature on the properties of high performance concrete (HPC), Procedia Engineering, 172: 256-263.
Grattan-Bellew, P (1996) Microstructural investigation of deteriorated Portland cement concretes, Construction and building materials, 10(1): 16-30.
Hager, I. and  Tracz, T (2010) The Impact of the Amount and Length of Fibrillated Polypropylene Fibres on the Properties of HPC Exposed to High Temperature/Wpływ Ilosci I Długosci Fibrylowanych Włókien Polipropylenowych Na Własciwosci Hpc Poddanego Działaniu Wysokiej Temperatury, Archives of Civil Engineering, 56(1): 57-68.
Husem, M (2006) The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete, Fire Safety Journal, 41(2): 155-163.
Kalifa, P., Chene, G, and  Galle, C (2001) High-temperature behaviour of HPC with polypropylene fibres: From spalling to microstructure, Cement and concrete research, 31(10): 1487-1499.
Khoury, G (1992) Compressive strength of concrete at high temperatures: a reassessment, Magazine of concrete Research, 44(161): 291-309.
Lennon, T. and  Clayton, N (1999) Fire tests on high grade concrete with polypropylene fibres, 5th International Symposium on the Utilisation of High Strength/High Performance Concrete, Savdejord, Norway.
Morsy, M.,  Al-Salloum, Y.,  Abbas, H.,  Alsayed, S (2012) Behavior of blended cement mortars containing nano-metakaolin at elevated temperatures, Construction and Building materials, 35: 900-905.
Nishida, A (1995) Study on the properties of high strength concrete with short polypropylene fiber for spalling resistance, Int. Conf. on Concrete under Severe Conditions, Sapporo.
Nonnet, E.,  Lequeux N.,   Boch, P (1999) Elastic properties of high alumina cement castables from room temperature to 1600C, Journal of the European Ceramic Society, 19(8): 1575-1583.
Othuman, M. A. and  Wang, Y (2011) Elevated-temperature thermal properties of lightweight foamed concrete, Construction and Building Materials, 25(2): 705-716.
Sarvaranta, L.,  Elomaa M.,  Järvelä, E (1993) A study of spalling behaviour of PAN fibre‐reinforced concrete by thermal analysis, Fire and materials, 17(5): 225-230.
Sarvaranta, L. and  Mikkola, E (1994) Fibre mortar composites in fire conditions, Fire and materials, 18(1): 45-50.
Sarvaranta, L. and  Mikkola, E (1994) Fibre mortar composites under fire conditions: effects of ageing and moisture content of specimens, Materials and Structures, 27(9): 532-538.
Schneider, U (1976) Behaviour of concrete under thermal steady state and non‐steady state conditions, Fire and Materials, 1(3): 103-115.
Siddique, R. and  Kaur, D (2012) Properties of concrete containing ground granulated blast furnace slag (GGBFS) at elevated temperatures, Journal of Advanced Research, 3(1): 45-51.
Tanyildizi, H. and  Coskun A (2008) The effect of high temperature on compressive strength and splitting tensile strength of structural lightweight concrete containing fly ash, Construction and building materials, 22(11): 2269-2275. 
Walraven, J. C. and  Stoelhorst, D (2008) Tailor Made Concrete Structures: New Solutions for our Society, (Abstracts Book 314 pages+ CD-ROM full papers 1196 pages).
Xiao, J. and  Falkner, H (2006) On residual strength of high-performance concrete with and without polypropylene fibres at elevated temperatures,  Fire safety journal, 41(2): 115-121.
Zhou, Q. and  Glasser, F. P (2001) Thermal stability and decomposition mechanisms of ettringite at< 120 C, Cement and Concrete Research, 31(9): 1333-1339.