پترولوژی گرانیت های مجموعه دگرگونی گشت (غرب رشت)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه بین‌المللی امام خمینی قزوین، قزوین

2 دانشکده زمین‌شناسی، پردیس علوم، دانشگاه تهران، تهران

10.22084/nfag.2019.17655.1342

چکیده

مجموعه دگرگونی گشت در ارتفاعات تالش (البرز غربی) برونزد دارد. با توجه به شواهد صحرایی و میکروسکوپی، دو نسل گرانیت در مجموعه دگرگونی گشت وجود دارد. اولین نسل گرانیت (G1) متوسط بلور و خاکستری روشن است و فابریک­ میلونیتی نشان می‌دهد. نسل دوم (G2) شامل لوکوگرانیت‌های درشت بلور است که به داخل گرانیت نسل اول و سنگ‌های متاپلیتی تزریق شده است. کوارتز، پلاژیوکلاز، پتاسیم­فلدسپار و بیوتیت کانی­های سنگ­ساز گرانیت نسل اول هستند. کانی­های اصلی گرانیت نسل دوم، کوارتز و پتاسیم فلدسپار و پلاژیوکلاز است. تورمالین، گارنت و سیلیمانیت کانی­های فرعی می­باشند. شواهد کانی­شناسی و ژئوشیمیایی بیانگر آن است که گرانیت­های نسل اول و دوم به ترتیب دارای خاستگاه آذرین و رسوبی هستند. شباهت ترکیبی قابل­توجهی بین گرانیت‌های گشت به خصوص انواع نسل دوم و لوکوسوم میگماتیت­های هم­جوار و لوکوگرانیت­های هیمالیا که شاخص جایگاه برخوردی هستند وجود دارد. تاریخچه زمین شناسی طولانی رویداد بسته شدن پالئوتتیس تشکیل نسل­های متوالی گرانیت­زایی در حاشیه فعال قاره­ای از کربونیفر تا تریاس بالایی را در پی داشته است. احتمالاً در طی فرورانش و قبل از مرحله تصادم قاره­ای، گرانیت­های نسل اول در لبه بلوک توران شکل گرفته­اند. مرحله نهایی محو پالئوتتیس با برخورد بلوک البرز و حاشیه جنوبی اورآسیا در طی فاز کوهزایی ائوکیمرین صورت گرفته و با تشکیل سنگ­های دگرگونی متاپلیتی مجموعه گشت در اعماق میانی تا زیرین جایگاه برخورد قاره­ای و گرانیت­زایی نسل دوم خاتمه یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

Petrology of granites from the Gash metamorphic complex

نویسندگان [English]

  • M. Zandifar 1
  • M. Nasrabady 1
  • R. Nozaem 2
چکیده [English]

Gash metamorphic complex is cropped out in the Talesh Mountain (Western Alborz). According to the field and microscopic evidences, there are two generations of granite in the Gash metamorphic complex. The first generation of granite (G1) is medium grained and light gray and displays mylonitic fabric. The second generation (G2), contains coarse leucogranites that has been injected into the first generation of granite and metapelitic rocks. Quartz, plagioclase, K-feldspar and biotite are the rock forming minerals of the first generation granite. The main minerals of the second generation granite are quartz, K-feldspar and plagioclase. Tourmaline, garnet and sillimanite are accessory minerals. Geochemical and mineralogical evidences indicating that the precursor of first and second generation of granites are I- and S-type, respectively. There is considerable compositional similarity particularly between the second generation granite and leucosome of the adjoining migmatites and Himalayan leucogranites that are indicator of collision setting. The prolonged geological history of Paleo-Tethys closure episode was resulted in successive generations of granitization in the continental active margin from Carboniferous to Upper Triassic. Probably, during subduction and prior to continental collision stage, the first generation of granites have been formed in the edge of Turan block. The final stage of Paleo-Tethys vanishing has taken place as a consequence of collision between Alborz block and southern margin of Eurasia during Eo-Cimmerian orogeny and terminated with the formation of metapelitic of Gash complex in the middle to lower depth of the continental collision setting and production of the second generation of granitization.

کلیدواژه‌ها [English]

  • granite
  • partial melting
  • continental collision setting
  • Gash complex
جانی­پور، ر (1393) ژئوشیمی و پترولوژی سنگ­های ماگمایی منطقه تالش- لیسار، غرب گیلان، پایان­نامه کارشناسی ارشد، دانشگاه بین­المللی امام خمینی قزوین.
جعفری، م (1388) پترولوژی سنگ‌های مافیک مجموعه دگرگونی گشت، شهرستان فومن، گیلان، رساله‌ کارشناسی­ارشد، دانشکده‌ علوم­پایه، دانشگاه تربیت مدرس.
جوانمرد، م. ر (1393) پترولوژی مجموعه دگرگونی گشت، پایان­نامه کارشناسی­ارشد، دانشگاه بین­المللی امام خمینی قزوین.
جـوانـمرد، م. ر.، نصـرآبـادی، م. و قلـی­زاده، ک (1395) کانی­شناسی، ژئوشیمـی و جـایگاه زمیـن­ساختی متابازیت­های مجموعه دگرگونی گشت (باختر رشت). مجله بلورشناسی و کانی­شناسی، 2، 258-243.
جوانمرد، م. ر.، نصرآبادی، م.، داوودی، ز. و قلی­زاده، ک (1393) مجموعه دگرگونی گشت: مثالی از دگرگونی P/T متوسط کمربندهای کوهزایی، سی­سومین همایش انجمن زمین­شناسی ایران، تهران، 313-306.
درویش‌زاده، ع (1382) زمین‌شناسی ایران، انتشارات دانشگاه تهران.
رزاقی،  ص (1395) میگماتیت­زایی مجموعه دگرگونی گشت، پایان­نامه کارشناسی­ارشد، دانشگاه بین­المللی امام خمینی قزوین.
سعادت، م.، نصرآبادی، م. و آسیابانها، ع (1393) دما- فشارسنجی و تفسیر جایگاه تکتونیکی سنگ­های رخساره شیست­ آبی مجموعه دگرگونی اسالم (شمال­باختر رشت)، مجله پترولوژی دانشگاه اصفهان، 19، 154-138.
محمدی، م (1395) تورمالین­زایی مجموعه دگرگونی گشت، پایان­نامه کارشناسی­ارشد، دانشگاه بین­المللی امام خمینی قزوین.
معدنی­پور، س (1392) الگوی زمانی و فضایی برخاستگی همراه با فرسایش در کوه­های تالش، شمال­غرب ایران، رساله دکتری، دانشگاه تربیت مدرس.
میکائیلی، ر (1392) پترولوژی سنگ‌های رسی دگرگونی گشت و ماسال، شمال ایران، رساله دکتری، دانشگاه تبریز.
Alavi, M (1991) Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran. Geological Society of America Bulletin, 103: 983–992.
Alavi, M (1996) Tectonostratigraphic synthesis and structural style of the Alborz Mountain System in Iran. Journal of Geodynamics, 21(1): 1–33.
Alavi, M., Vaziri, H., Seyed-Emami, K., Lasemi, Y (1997) The Triassic and associated rocks of the Nakhlak and Aghdarband area in central and northeastern Iran as remnants of the southern Turanian active continental margin. Geological Society of America Bulletin, 109: 1563-1575.
Aldanmaz, E. Koprubasi, N., Gurer, O. F., Kaymakci, N. Gourgaud, A (2006) Geochemical Constraints on the Cenozoic, OIB-type alkaline volcanic rocks of NW Turkey, implications for mantle. Lithos, 86: 50-76.
Bachelor, R. A. and Bowden, P (1985) Petrologic interpretation of granitoid rocks series using multi-cationic parameters. Chemical Geology 48, 43–55. Canadian Mineralogist, 19: 3–17.
Barker, F(1979) Trondhjemites, Dacites and related rocks. Elsevier, Amsterdam, p 659.
Cawthorn, R. G. and Brown, P. A (1976) A model for the formation and crystallization of corundum-normative calc-alkaline magmas through amphibole fractionation. L Geol, 84: 467-476.
Chappell, B. W. and White, A. J. R (2001) Two contrasting granite types: 25 years later. Australian Journal of Earth Science, 48: 489–499.
Clark, G. C., Davies, R. G., Hamzehpour, B., Jones, C. R (1975) Explanatory text of the Bandar-e-Pahlavi quadrangle map, 1/250000, Geological Survey of Iran, Tehran.
Clarke, D. B (1981) The mineralogy of peraluminous granites: a review. Can. Mineral, 19: 3–17.
Clemens, J. D. and Wall, V. J (1981) Origin and crystallization of some peraluminous (S-type) granitic magmas. Can. Mineral, 19: 111–131.
De la Roche, H., Leterrier, J., Grandclaude, P. and Marchal, M., 1980. A classification of volcanic and plutonic rocks using R1, R2-diagrams and major element analysis, its relationships with current nomenclature. Chemical Geology, 29: 183–210.
Delaloye, M., Jenny, J. and Stampfli, G (1981) K–Ar dating in the eastern Elburz (Iran). Tectonophysics, 79: 27–36.
Dingwell, D. B., Knoche, R., Webb, S. L. and Pichavant, M (1992) The effect of B2O3 on the viscosity of haplogranitic liquids. American Mineralogist, 77: 457-461.
Ewart, A. and Stipp, J. J (1968) Petrogenesis of the volcanic rocks of the central North Island, New Zealand, as indicated by a study of Sr87/Sr86 ratios, and Sr, Rb, K, U and Th abundances. Geochim. Cosmochim. Acta, 32: 699-736.
Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J., Frost, C. D (2001) A geochemical classification for granitic rocks. Journal of Petrology, 42: 2033–2048.
Gou, Z. and Wilson, M (2012) The Himalayan leucogranites: Constraints on the nature of their crustal source region and geodynamic setting. Gondwana Research, 22: 360-376.
Green, T. H (1976) Experimental generation of cordierite or garnet-bearing granitic liquids from a pelitic composition. Geology, 4: 85-88.
Heming, R. F. and Carmichael, I. S. E (1973) High temperature pumice flows from the Rabaul caldera. Papua, New Guinea. Contributions to Mineralogy and Petrology, 38: 1-20.
Karimpour, M. H., Stern, C. R., Farmer, L (2010) Zircon U–Pb geochronology, Sr–Nd isotope analyses, and petrogenetic study of Dehnow diorite and Kuhsangi granodiorite (Paleo-Tethys), NE Iran. Journal of Asian Earth Sciences, 37: 384–393.
Irvine, T. N., Baragar, W. R. A (1971) A guide to the chemical Classification of the common volcanic rock: Can. J. Earth Sci., 8: 523-548.
Luth, W. C., Jahns, R. H. and Tuttle, O. F (1964) The granite system at pressures of 4 to 10 kilo bars. J. Geophys. Res, 69: 759-773.
Magazine for Geo-Scientists. Amsterdam, 12: 1–33.
Maniar, P. D. and Piccoli, P. M (1989) Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101: 635-643.
Middlemost, E. A. K (1994) Naming materials in the magma/igneous rock system. Earth Science Review, 37: 215-224.
Midlemost, E. A. K (1985) Magmas and Magmatic Rocks. Longman. 226p.
Mirnejad, H., Lalonde, A. E., Obeid, M., Hassanzadeh, J (2013) Geochemistry and petrogenesis of Mashhad granitoids: An insight into the geodynamic history of the Paleo-Tethys in northeast of Iran. Lithos, 170: 105–116.
Nabelek, P. I. and Liu, M (2004) Petrologic and thermal constraints on the origin of leucogranites in collisional orogens. Earth Sciences, 95: 73-85.
Oconnor, J. T (1965) A classification for quartz- rich igneous rock based on feldspar ratio. In: US Geological Survey Professional Paper B525. USGS, p.79-84.
Omrani, H., Michaeli, R., Moazzen, M (2013b) Geochemistry and petrogenesis of the Gash peraluminous granite, western Alborz Mountains, Iran. N. Jb. Geol. Paläont. Abh, 268(2): 175–189.
Omrani, H., Moazzen, M., Oberhänsli, R., Tsujimori, T., Bousquet, R., Moayyed, M (2013a) Metamorphic history of glaucophane-paragonite-zoisite eclogites from the Shanderman area, northern Iran. Journal of Metamorphic Geology, 31: 791-812.
Pearce, J. A, Cann, J. R (1971) Ophiolite origin investigated by discriminant analysis using Ti, Zr, and Y, Earth planet. Sci. Lett, 12: 339-349.
Pearce, J. A. and Cann, J. R (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett, 19: 290-300.
Pearce, J. A. Harris, N. B. W. Tindle, A. G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rock. Journal of petrology: v. 25, p. 956-983.
Pichavant, M (1981) An experimental study of the effect of boron on a water saturated haplogranite at 1kbar vapor pressure. Contributions to Mineralogy and Petrology, 76: 430-439.
Rossetti, F., Monié, P., Nasrabady, M. Lucci, F., Theye T., Saadat, M (2017) Early Carboniferous subduction zone metamorphism preserved within the Paleo-Tethyan Rasht ophiolites (western Alborz, Iran). Geological Society of American Bulletin, DOI: 10.1144/jgs2016-130
Rudnick, R. L., Fountain, D. M (1995) Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33: 267–309.
Rudnick, R. L., Gao, S (2003) Composition of the Continental Crust. Treatise Geochem, 3: 1-64.
Schandl, E. S., and Gorton, M. P (2002) Application of high field strength elements to discriminate tectonic setting in VMS environments. Economic Geology, 97: 629–642.
Sengör, A. M. C (1984) The Cimmeride orogenic system and the tectonics of Eurasia. Geological Society of America, Special Paper, 195: 1-82.
Shand, S. J (1943) Eruptive rocks. Their Genesis, Composition, classification, and Their Relation to Ore- Deposits, a Chapter on Meteorite. New York: John Wiley and Sons.
Sheikholeslami, M. R., Kouhpeyma, M (2012) Structural analysis and tectonic evolution of the eastern Binalud Mountains, NE Iran. Journal of Geodynamics, 61: 23–46.
Streckeisen, A (1976) To each plutonic rock its proper name. Earth Sci. Rev, 12: 1-33.
Sun, S., McDonough, W. F (1989) Chemical and isotopic-systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A. D., Norry, M. J. (Eds.), Magmatism in Ocean Basins, Geological Society of London Special Publication, 42: 313-345.
Taylor, S. R. and McLennan, S. M (1985) The Continental Crust: its Composition and Evolution. Blackwell, Oxford, 312 pp.
White, A. J. R., Chappell, B. W (1983) Granitoid types and their distribution in the Lachland fold belt, southern Australia. The Geological Society of America, 154: 21-34.
Winter, J (2011) Principle of igneous and metamorphic petrology. Pearson new international edition, Upper. Saddle River, New Jersey.
Whitney, D. L., and Evans, B. W (2010) Abbreviations for names of rock-forming minerals.  American Mineralogist, 95: 185–187.
Zanchetta, S., Berra, F., Zanchi, A., Bergomi, M., Caridroit, M., Nicora, A. and Heidarzadeh, G (2013) The record of the Late Paleozoic active margin of the Paleo-Tethys in NE Iran: Constraints on the Cimmerian orogeny. Gondwana Research, 24: 1237-1266.
Zanchetta, S., Zanchi, A., Villa, I., Poli, S., Muttoni, G (2009) The Shanderman eclogites: a Late Carboniferous high-pressure event in the NW Talesh Mountains (NW Iran). In: South Caspian to Central Iran basins (Eds. Brunet, M. F., Wilmsen, M. and Granath, J. W.) Special Publications, Geological Society, London, 312: 57-79.
Zanchi, A., Zanchetta, S., Berra, F., Mattei, M., Garzanti, E., Molyneux, S (2009) The Eo-Cimmerian (Late? Triassic) orogeny in North Iran. In: South Caspian to Central Iran basins (Eds. Brunet, M. F., Wilmsen, M. and Granath, J. W.) Special Publications Geological Society, London, 312: 31-55.