بررسی زمین‌شیمی زیست‌محیطی اثرات آبیاری پساب بر خاک‌های کشاورزی و سطحی جنوب شهر تربت حیدریه، استان خراسان رضوی، شمال‌شرق ایران

نویسندگان

گروه زمین‌شناسی، دانشگاه پیام‌نور، صندوق پستی 4697-19395، تهران، ایران

چکیده

زمین­های کشاورزی جنوب شهر تربت حیدریه به مدت بیش از 30 سال با پساب شهری آبیاری شده­اند. در این پژوهش ترکیب شیمیایی و خواص فیزیکوشیمیایی خاک­های آلوده آبیاری شده با پساب و میزان فلزات سنگین سبزیجات کشت شده بر روی این خاک­ها تعیین شده و با نمونه­های غیرآلوده مقایسه شده است. در خاک­های آلوده میزان pH (8/7- 5/7) کمتر و درصد ماده آلی (بیش از 3/2) بیش­تر از سایر خاک­ها (با pH بالای 8 و درصد ماده آلی کمتر از یک) می­باشد. مقادیر یکسان اکسیدهای اصلی و روند مشابه الگوهای عناصر نادر خاکی (REE) در تمام نمونه­های خاکی، مواد مادر مشابه در تشکیل آن­ها را پیشنهاد می­دهد. با این­حال میزان عناصر کمیاب در خاک­های آلوده و سایر نمونه­ها بسیار متفاوت است. خاک­های آلوده شده با پساب غنی­شدگی قابل­ملاحظه در بسیاری از عناصر بالاخص فلزات سنگین نشان می­دهند. خاک­های آلوده در مقایسه با سایر نمونه­ها نسبت­های 206Pb/204Pb، 207Pb/204Pb، 208Pb/204Pb و 206Pb/207Pb پایین­تر و 208Pb/206Pb بالاتری دارند که نشان از تأثیر منابع بشر­زاد بر ترکیب این خاک­ها دارد. زیست­دسترس­پذیری فلزات سنگین در خاک­های آلوده به نسبت سایر خاک­ها بسیار افزایش یافته و موجب بالا رفتن ضریب انتقال به گیاه و تمرکز بالای فلزات سنگین در سبزیجات کشت شده بر روی این خاک­ها شده است. غلظت فلزات سنگین Cd، Cr و Pb در سبزیجات آلوده به بالاتر از حداکثر غلظت مجاز می­رسد.

کلیدواژه‌ها


عنوان مقاله [English]

Environmental geochemistry of agricultural soils and topsoils irrigated by sewage in the south of Torbate Heydarieh city, Khorasan-e-Razavi province, Northeast of Iran

نویسندگان [English]

  • Seyed Ali Mazhari
  • Fahimeh Sheibani
  • Ali Reza Mazloumi Bajestani
Department of Geology, Faculty of Science, Payame Noor University
چکیده [English]

The farmlands area in the south of Torbate Heydariyeh city has been irrigated by sewage for over 30 years. In this study, the chemical composition and physicochemical properties of soils irrigated by sewage and heavy metal concentration of vegetables cultivated in these soils are determined and compared with unpolluted samples. The polluted soils have a lower pH (7.5- 7.8) and higher organic content (more than 2.3%) than other soils (with pH>8 and organic component < 1%). All soil samples show similar major oxide composition and the same rare earth element (REE) patterns indicative similar parental materials. However, the trace elements composition is completely different between polluted and unpolluted soils. The soils irrigated by sewage show intense enrichment of many elements, especially heavy metals. These soils have lower 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb, 206Pb/207Pb and higher 208Pb/206Pb ratios than other soils which indicate the role of anthropogenic sources in their genesis. The bioavailability values in the polluted soils are very higher than unpolluted samples which led to increasing of transfer factor and heavy metal concentration in the vegetables. The concentration of Cd, Cr, and Pb in the polluted vegetables is more than the maximum permitted concentration.

کلیدواژه‌ها [English]

  • Geochemistry
  • Sewage
  • Soil pollution
  • Heavy metals
  • Torbate Heydarieh

سازمان حفاظت محیط­زیست ایران (1392) استانداردهای کیفیت منابع خاک و راهنماهای آن. معاونت محیط­زیست انسانی، دفتر آب و خاک، 166 ص.

مظلومی­بجستانی، ع.ر.، کریم­پور، م.ح.، رسا، ا.، رحیمی، ب.، وثوقی عابدینی، م (1387) کانسار طلای کوه زر تربت حیدریه مدل جدیدی از کانی­سازی طلا. مجله بلورشناسی و کانی­شناسی ایران، سال شانزدهم، شماره3، 376- 363.

مظهری، س. ع.، مظلومی­بجستانی، ع. ر.، شریفیان عطار، ر (1392) نقش عناصر کمیاب در زمین­شیمی زیست­محیطی، انتشارات سخن گستر، مشهد، 340 ص.

واعظی­پور، م. ج.، بهروزی، ا.، خـلقی، م. ح (1370) نـقشه زمین­شناسی 1:250000 تربت حیدریه، چهارگوش شماره K5. انتشارات سازمان زمین­شناسی کشور.

نبوی، م. ح (1355) دیباچه­ای بر زمین­شناسی ایران. انتشارات سازمان زمین­شناسی کشور، 110ص.

Ahmad, M. K., Islam, S., Rahman, S., Haque, M. R., & Islam, M. M (2010) Heavy metals is water, sediment and some fishes of Buringanga River, Bangladesh. International Journal of Environmental Research, 4(2): 321–332.

Álvarez-Iglesias P, Rubio B, Millos J (2012) Isotopic identification of natural vs. anthropogenic lead sources in marine sediments from the inner Ría de Vigo (NW Spain). Science of the Total Environment, 437 (1): 22–35.

Bower CA, Hatcher JT (1966) Simultaneous determination of surface area and cation-exchange capacity. Soil Sci. Soc. Am. Proc, 30: 525-527.

Chary, N.S., Kamala, C.T., Raj, D.S.S (2008) Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicology and Environmental Safety, 69: 513–524.

Cheng, H., Hu, Y (2010) Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review. Environmental Pollution, 158 (10): 1134-1146.

Cicek A, Karaman MR, Turan M, Gunes A, Cigdem A (2013) Yield and nutrient status of wheat plant (T. aestivum) influenced by municipal wastewater irrigation. J Food Agric Environ, 11: 733–737. 

Doe, B.R., Delevaux, M.H (1972) Source of lead in Southeast Missouri galena ores. Economic Geology, 67 (4): 409–425.

Faure, G (1986) Principles of Isotope Geology. Wiley, New York, 589 pp.

FAO/WHO (2001) Food additives and contaminants. Joint Codex Alimentarius Commission, FAO/WHO Food standards Program, ALINORM 01/12A.

Galušková I., Mihaljevič, M., Borůvka, L., Drábek, O., Frühauf, M., Němeček, K (2014) Lead isotope composition and risk elements distribution in urban soils of historically different cities Ostrava and Prague, the Czech Republic. Journal of Geochemical Exploration, 147 (3): 215-221.

Gupta, N., Khan, D. K., Santra, S. C (2008) An assessment of heavy metal contamination in vegetables grown in wastewater-irrigated areas of Titagarh, West Bengal, India. Bulletin of Environmental Contamination and Toxicology, 80: 115–118.

Han, L., Gao, B.,Wei, X., Gao, L., Xu, D., Sun, K (2015) The characteristic of Pb isotopic compositions in different chemical fractions in sediments from Three Gorges Reservoir, China Environmental Pollution, 206 (5): 627-635.

Hansmann, W., Kӧppel, V (2000) Lead-isotopes as tracers of pollutants in soils, Chemical Geology, 171 (1): 123-144.

Islam, M.A., Romic´, D., Akber, M.D., Romic´, M (2018) Trace metals accumulation in soil irrigated with polluted water and assessment of human health risk from vegetable consumption in Bangladesh, Environ Geochem Health, 40: 59-85.

Kierczak, J., Neel, C., Aleksander-Kwaterczak, U., Helios-Rybicka, E., Bril, H. and Puziewicz, J (2008) Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: A combined approach. Chemosphere, 73: 776-784.

Kiziloglu FM, Turan M, Sahin U, Kuslu Y, Dursun A (2008) Effects of untreated and treated wastewater irrigation on some chemical properties of cauliflower (Brassica olerecea L. var. botrytis) and red cabbage (Brassica olerecea L. var. rubra) grown on calcareous soil in Turkey. Agr Water Manage, 95: 716–724.

Komárek M., Ettler, V., Chrastny, V., Mihaljevic, M (2008) Lead isotopes in environmental sciences: a review. Environmental International, 34 (6): 562–577.

Lindenberg, H.G., Gorler, K., Ibbeken, H (1983) Stratigraphy, structure and orogenic evolution of the Sabzevar Zone in the area of oryan Khorasan, NE Iran. GSI, Rep. No.51: 119-143.

Lindsay. L., Norvell, W.A (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3): 421–428.

Mazhari, S.A., Sharifian Attar, R (2015) Rare earth elements in surface soils of the Davarzan area, NE of Iran. Geoderma Regional, 5: 25–33.

Mazhari, S.A., Sharifian, R., Haghighi, F. (2017) Heavy metals concentration and availability of different soils in Sabzevar area, NE of Iran. Journal of African Earth Sciences, 134: 106-112.

McBride, M.B (1989) Reactions controlling heavy metal solubility in soils, Adv. Soil Sci., 10: 1-56.

Ming-yong, Z., Shu-duan, T., Wen-zhi, L., Quan-fa, Z (2010) A review of REE tracer method used in soil erosion studies. Agric. Sci. China, 9 (8): 1167–1174.

Monna, F., Aiuppa, A., Varrica, D., Dongarra, G (1999) Pb isotope composition in lichens and aerosols from eastern Sicily: insights into the regional impact of volcanoes on the environment. Environmental Science and Technology, 33 (11): 2517–2523.

Quantin, C., Ettler, V., Garnier, J., Sebec, O (2008) Sources and extractibility of chromium and nickel in soil profiles developed on Czech serpentinites. ComptesRendus Geoscience, 340: 872–882.

Rodríguez-Seijo, A., Arenas-Lago, D., Andrade, M.L., Vega, F.A (2015) Identifying sources of Pb pollution in urban soils by means of MC-ICP-MS and TOF-SIMS, Environmental Science and Pollution Research, 22 (14): 7859–7872.

Rodriguez, J. A., Nanos, N., Grau, J. M., Gill, L., and Lopez–Arias, M (2008) Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere, 70: 1085–1096.

Romic, M., Matijevic, L., Bakic, H., & Romic, D (2014) Environmental risk assessment of soil contamination. In M. C. Hernandez-Soraino (Ed.), Copper accumulation in vineyard soils: Distribution, fractionation and bioavailability assessment. Intech publication, pp. 800–825, doi:10.5772/57266.

Singh, J., Suraj, K. U., Rajaneesh, K. P., Gupta, V (2011) Accumulation of heavy metals in soil and paddy crop (Oryza sativa) irrigated with water of Ramgarh Lake, Gorakhpur, UP, India. Toxicology & Environmental Chemistry, 93(3): 462–473.

Schumacher. B.A (2002) Methods for the determination of total organic carbon (TOC) in soils and sediments, Ecological Risk Assessments Support Center Office of Research and Development US. Environmental Protection Agency.

Sun, S.S., McDonough, W.F (1989) Chemical and isotopic systematics of the oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders and M.J. Norry, (Eds.), Magmatism in the Oceanic Basalts. Geol. Soc. London, 313-345.

USDA (1993) Soil survey manual, Soil Survey Division Staff: United States Department of Agriculture, pp. 63-65.

USEPA (2014) Soil Sampling (300)-AF.R3, SESD Operating Procedure:  US Environmental Protection Agency (SESDPROC-300-R3).

Verma, P., Agrawal, M., Sagar, R (2015) Assessment of potential health risks due to heavy metals through vegetable consumption in a tropical area irrigated by treated wastewater, Environ Syst Decis, 35: 375–388.

Xue, Z.j., Liu, S.Q., Liu, Y.L., Yan, Y.L (2012) Health risk assessment of heavy metals for edible parts of vegetables grown in sewage-irrigated soils in suburbs of Baoding City, China. Environ Monit Assess, 184: 3503-3513.