محیط تکتونیکی و پتروژنز دایک‌های موجود در توده گرانیتوئید جنوب قروه (کردستان)

نوع مقاله: مقاله پژوهشی

نویسندگان

گروه زمین‌شناسی، دانشکده علوم پایه، دانشگاه بوعلی‌سینا، همدان

چکیده

منطقه مورد مطالعه در جنوب شهر قروه (استان کردستان) و در پهنه سنندج- سیرجان قرار دارد. بر اساس مشاهدات صحرایی دایک­های مافیک و حدواسط از نوع دایک­های سین­پلوتونیک می­باشند. مطالعات سنگ­نگاری نشان می­دهد ترکیب آن‌ها گابرویی، گابرودیوریتی، دیوریتی، مونزودیوریتی و کوارتز مونزودیوریتی است. کانی­های اصلی آن‌ها عبارت‌اند از کلینوپیروکسن، ارتوپیروکسن، هورنبلند و پلاژیوکلاز، فلدسپار­پتاسیم و کوارتز. آپاتیت، اسفن، زیرکن و کانی­های فلزی جزء کانی­های فرعی این سنگ­ها محسوب می­شوند. کلیه دایک­ها دارای ماهیت تولئیتی هستند که در یک محیط وابسته به قوس در حاشیه فعال قاره­ای نفوذ کرده­اند و این موضوع به‌واسـطه غنی­شدگی آن‌ها از LILE (مانند Cs، Rb) U و، Pb، Yb، Hf و Ta و تهی­شدگی از HFSE (مانند Nb و Ba) و بالا بودن نسبت LILE/HFSE در آن‌ها مورد تائید قرار می­گیرد. غنی­شدگی از LILE و Pb شواهدی از آلایش پوسته­ای هستند. نسبت­های بالا La/Ta و La/Nb و غنی­شدگیLILE  و LREE دایک­های مورد مطالعه حکایت از این دارد که آن‌ها از گوشته لیتوسفری غنی­شده مشتق شده­اند. غنی­شدگی عناصر LREE نسبت به HREE نشانگر وجود فاز گارنت یا آمفیبول در سنگ منشایی می­باشد که این عناصر در آن‌ها تمرکز یافته­اند.

کلیدواژه‌ها


عنوان مقاله [English]

Tectonic setting and Petrogenesis of the mafic and dioritic dykes, S-Qorveh (Kurdistan)

نویسندگان [English]

  • Ashraf Torkian
  • Soraya Kianinahad
چکیده [English]

The study area is located in the south of Qorveh (Kurdistan Province), strcuctually in the Sanandaj-Sirjan zone. Based on field observations, the study dykes are type of sin-plotonic dykes and based on petrographical studies mafic and dioritic dykes are included gabbro, gabbro-diorite, diorite, monzodiorite and quartz-monzodiorite rocks. Their main minerals are clinopyroxene, orthopyroxene, hornblende, plagioclase, K-feldspar and quartz. Apatite, esphene, zircon and opaque minerals are their accessory minerals. The discrimination diagrams reveal all of the dykes belong to volcanic arc related to an active continental margin setting. It is implied by enrichment of LILE (such as Cs, Rb, U&Pb), depletion of HFSE (Nb, Ba) and high LILE/HFSE in the spider diagrams. The enrichment of LILE and Pb show the crustal contamination. Concentration La/Nb and La/Ta rations as well as the enrichment of LREE and LILE reveal that dykes were derived from enriched lithospheric mantle. I addition, enrichment of LREE elements relative to HREE represent that there are garnet phase or amphibole in source.  

کلیدواژه‌ها [English]

  • Dyke
  • Gabbro
  • Diorite
  • Tholeiite
  • continental arc
  • Sanandaj
  • Qorveh

ترکیان، ا (1387) بررسی ماگماتیسم توده گرانودیوریتی منطقه قروه (کردستان)، پایان­نامه دکتری، دانشگاه اصفهان، 135صفحه.

حسینی، م (1376) نقشه زمین­شناسی 100000/1 چهار گوش قروه همراه شرح نقشه، سازمان زمین­شناسی و اکتشافات معدنی کشور.

سنگ­قلعه، ر (1374) پترولوژی سنگ­های آذرین جنوب قلعه، پایان­نامه کارشناسی­ارشد، دانشگاه شهید بهشتی تهران، 195صفحه.

شعبانی، ط (1390) پتروگرافی و پترولوژی انکلاوهای توده نفوذی گرانیتوئیدی جنوب قروه-کردستان، پایان­نامه کارشناسی­ارشد، 149 صفحه.

شیخ­زکریایی، ج (1370) زمین­شناسی و سنگ­شناسی منطقه قروه، پایان­نامه کارشناسی­ارشد، دانشگاه تهران، 195 صفحه.

عمیدی، ح (1345) تحقیق سنگ­­­­شناسی آذرین جنوب شهرستان قروه، پایان­نامه کارشناسی­ارشد دانشگاه تهران، 60 صفحه.

محبی، خ (1392) پتروگرافی و پترولوژی توده نفوذی گابرویی کوه­پریشان (جنوب قروه) استان کردستان. پایان­نامه کارشناسی­ارشد، 101صفحه.

میری، م. م (1390) بـررسی پترولوژیکی و ژئــوشیمیایی توده­های آذرین منطقه­ی تکیه بالا (جنوب­شرق کردستان) با نگرشی ویژه بر کانسارسازی آهن، پایان­نامه کارشناسی ارشد،142 صفحه.

ولی­زاده، م.م.، صادقیان، م.، اکرمی، م.، ع (1380) انکلاو و پترولوژی گرانیت­ها، انتشارات دانشگاه تهران، صفحه 552-539.

Aldanmas, E., Koprubas, O.F., Gurer Kay makc, N. and Gourgand, A (2006) Geochemical Constrains on the Cenozoic, OIB-Type alkaline volcanic rocks of NW Turkey: Implications For mantle, Journal of Lithos, 86: 50-76.  

Alavi, M (1994) Tectonics of Zagros orogenic belt of Iran: New data and interpretation, Tectonophysics, 229: 211-238.

Arsalan, M., Aslan, Z (2006) Mineralogy petrography and whole-rock geochemistry of the Tertiary granitic intrusions of Asian Earth sciences, 27:177-193.

Barbarin, B and Didier, J (1992) Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Trans. Royal Soci. Edinburgh, Earth Sciences, 83: 145-153.

Baxter, S and Feely, M (2002( Magma mixing and mingling textures in granitoids: examples from the Galway granite (Connemara Ireland). Mineralogy and Petrology, 76: 63-74.

 Berthire, F., Billiaul, H.P., Halbroronn, B and Maziot, P (1974) Etudsstratigraphique: Petrologiqueetstraudtural de La region de khorramabad (Zagros, Iran).

Boynton, W. V (1984) Cosmochemistry of the rare elements: meteorite studies In: Rare Earth Element Geochemistry (Ed. Henderson) P, 63-114 Elsevier, Amsterdam.

Didier, J (1987) Contribution of enclaves studies to the understanding of origin and evolution of granite magma. Geology, 7(6): 41-50.

Floy, P. A and WinchesterJ.A (1975) Magma type and tectonic setting discrimination using immobile elements. Earth and Planetary Science Letters, 27: 211-218.

Furman, T. andSpera F. J (1985) Co-mingling of acid and basic magma with implications for the origin of mafic I-type xenoliths: field and petrochemical relations of usual dike complex at Eagle Peak Lake Sequoia National Park California, USA, Volcanol. Geotherm. Res, 24: 151-178.

Hosseini, M (1999) Geological Qorveh Map 1:100000 Geologica Survey of Iran, Tehran (in Persian).

Irvine, T.N and Baragar, W.R.A (1971) Guide to the chemical classification of the common volcanic rocks. Earth Science, 8: 523-484.

Lopez-plaza, M., peinado, M., Lopez-Moro, F.J., redriguez-Alonso M.D., Carnicero, A.,Franco, M.P., Gonzalo, J.C. and navidod, M (2007) Contrasting mantle sources and processes involved in a Peri-Gondwananterranc: A case study of pre-Variscan mafic intrusive from the autochthon of the central Iberian zone،Geological society of America special, 4230: 297-313.

Mahmoudi, S., Corfu, F., Masoudi, F., Mehrabi, B. and Mohajjel, M (2012) U–Pb dating and emplacement history of granitoid plutons (northern Sanandaj–Sirjan Zone). Asian Earth Sciences, 410: 238–249 (in Persian).

Mercier, J. C. C (1976) Single-pyroxene geothermometry and geobarometry. American Mineralogist, 61: 603-615.

Middlemost, E.A.K (1994) Naming materials in the magma/igneous rock system. Earth Science, 37: 215-224.

Muller, D. and Groves, D.I (1997) Potassic igneous rocks and associated gold copper mineralization. Lecture Notes in Earth Sciense 56.

Pearce, J.A. and Peate, D.W (1995) Tectonic implication of the composition of volcanic arc magmas. Annual Review Earth and planetary Science Letters, 23: 251-285.

Pearce, J. A (1983) Role of sub-continental litospher in magma genesis at active continental margins. In: continental Basalte and Mantle Xenoliths (Eds. Hawkesworth, C.J. and norry, M.J.) Shiva, Nantwich, 230-272.

Reid, J.B., Evans O. C. and Fates D. G (1983) Magma mixing in granitic rocks (Central Sierra Nevada, California). Earth and planetary Science Letters, 66: 243-261.

Rogers, J.J.W., Suayah, l. B. and Dwards, J. M (1984) Trace elements in continental marginemagmatism. Geological Society, 95: 1437-1445.

Rollinson, H (1993) Using geochemical data: evolution, presentation, interpretation. Longman Scientific and Technical, London.

Sabah, Y.S (2008) Geochemistry of mafic microgranular enclaves in the TamdereQurtzmonzonite, south of  Derili/Giresun, Eastern pontides، Turkey,  chimic der Erde, 68: 81-92.

Sirvastava R.K., Singh R.K (2004) Trace element geochemistry and genesis of precabriansubalkaline mafic dikes from the central Indian caton: evidence for mantle metasomatism Journal of Asian Earth sciences, 23: 373-389.

Sun, S.S. and McDonough, W.F  (1989) Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. In: Magmatism in ocean basins (Eds. Saunders, A. D. and Norry, M. J.). Geological Society, London, Special Publication, 313-345

Shand, S. J (1943) Eruptive Rocks, their genesis, composition, classification, and their relation to ore-deposits whit a chapter on meteorite New York: John Wiley and Sons.

Temel, A., Gondogu, M. N. and Gourgaud, A (1998) Petrological andgeochemical characteristics of Cenozoic high-K calcalcaline  volcanism in Konya (Central Antolia). Volcanology and Geothermal Research, 85: 327-357.

Wass, S.Y., Roger N.W (1980) MantleMetasomatism precursor to alkaline continen volcanism GeochimicalCosmochimestryActa, 44: 1811-1823.

Whitney, D.L., Evans, B.W (2010) Abbreviations for names of rock-forming minerals, American Mineralogist, 95: 1854-187.

Wilson, M (1989) Igneous Petrogenesis: Unwin Hyman press. London.

Zhao, J.H., Zhou, M.F., Jian-Ping, Z (2010) Metasomatic mantle sours and crust contamination mafic dyke swarm in the northern Yangtze Block, South China, 115: 177-189.

Zhao, J.H., Zhou, M.F ( 2007) a. Geochemistry OfNeoproterozoic mafic intrution in the Panzhihhua district (Sichuan province. SW China): implication for subduction-related metasomatism in theupper mantle. Precambrian Reserch, 152: 27-47.

Zou,H. B., Zindler, A., Xu,X. s., Qi, Q ( 2000) Major,traceelement,andNd, Sr and Pb  isotope studies of Cenozoic basalte in SE China: mantle sources, regional variations. and tectonic significance.Chemical Geology, 171: 33-47.