بررسی آزمایشگاهی اثر درجه حرارت بر خزش سنگ نمک تحت فشارهای همه جانبه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی معدن، دانشگاه بین‌المللی امام خمینی، قزوین

2 گروه زمین‌شناسی، دانشگاه بین‌المللی امام خمینی، قزوین

چکیده

سنگ­نمک جزو گروه سنگ‌های رسوبی شیمیایی غیرآلی بوده و غالباً از هالیت تشکیل شده است. یکی از مشخصات مواد نرم مثل سنگ نمک تغییر شکل وابسته به زمان یا رفتار خزشی است. خزش با عنوان تغییر شکل غیرقابل بازگشت در زمان شناخته می‌شود و اغلب در سنگ‌های نرم مانند سنگ­نمک، زغال‌سنگ و سنگ‌های رسوبی نرم دیده می‌شود. بنابراین یکی از نیازهای اساسی در طراحی مهندسی سازه‌های سنگی نرم، شناخت و مدل‌سازی صحیح کرنش خزشی است. یکی از عوامل مؤثر بر روی خزش سنگ‌ها درجه‌ی حرارت می‌باشد. آگاهی از میزان خزش سنگ‌ها خصوصاً سنگ­نمک تحت تأثیر حرارت کمک شایانی به پیشبرد اجرای کار در پروژه‌های مختلف نفتی و زیرزمینی می‌کند. در این پژوهش به بررسی اثر درجه حرارت بر روی خزش تک­محوری و سه­محوری سنگ­نمک پرداخته شده است. آزمایش‌های سه­محوری در شرایط تنش همه­جانبه انجام‌ شده است به دلیل آن که در اعماق زیاد معمولاً این شرایط حاکم است. بنابراین تنش تفاضلی در تمام حالت‌ها صفر است. نتایج تحقیق نشان می‌دهد که با افزایش دما مقدار نرخ کرنش سنگ­نمک به صورت غیرخطی افزایش می­یابد و با افزایش فشار محصور کننده نرخ کرنش کاهش می­یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental study of the effect of temperature on creep of salt rock under hydrostatic pressures

نویسندگان [English]

  • Hossein Jalalian 1
  • M. Hosseini 1
  • Alireza Taleb Bidokhti 2
1 Imam Khomeini International university
2 Imam Khomeini International University
چکیده [English]

Salt rock is part of the group of inorganic chemical sedimentary rocks and is often consisted of halite. One of the characteristics of soft materials is deformation related to the time or creep behavior. Creep is known as an irreversible deformation at the time and is often found in soft rocks such as rock salt, coal, shale and soft sedimentary rocks. Therefore, one of the basic requirements in the design of soft rock structural engineering is the correct modeling of the creep strain. One of the factors affecting the salt creep is the temperature. Knowing of the rate of rocks creep, especially the heat-treated rock salt, helps to promote the implementation of work in various oil and underground projects. In this study, the effect of temperature on the triaxial creep of salt rock has been studied. These tests have been performed under hydrostatic stress conditions, because these conditions usually prevail in the depths. Therefore, differential stress is zero in all states. Results show that with increasing temperature, the strain rate of salt rock increases nonlinearly and by increasing the confining pressure, the strain rate decreases.

کلیدواژه‌ها [English]

  • Salt rock
  • creep
  • lateral strain
  • axial strain
  • temperature
  • confining pressure

توکلی، ح.، امیرشیرزاد، ب.، دشت­بزرگی، ج (1391) تاثیر جریان لایه­های نمک بر پایداری لوله­های جداری چاه­های نفتی میدان مارون. اولین کنفرانس فناوری­های معدنکاری ایران، 17-15 شهریور، یزد، ایران، 1391.

دشت­بزرگی، ج.، محمدی، ه.، صالحی کسایی، م. ح.، علی محمدی، ع (1388) بررسی دلائل آسیب­دیدگی لوله­های جداری میدان مارون و راه­حل­های پیشنهادی. مجله اکتشاف و تولید، شماره 56، صفحات 49-52.

رحیمی، ش (1392) مطالعات آزمایشگاهی رفتار خزش بر روی استوانه­های توخالی جداره ضخیم سنگ­نمک، پایان­نامه­ی کارشناسی­ارشد، دانشگاه بین­المللی امام خمینی (ره)، قزوین.

 زارعیان جهرمی، الف.، کریمی نسب، س.، جلالی­فر، ح (1388) تحلیل نرخ همگرایی دیواره چاه­های نفت در اثر پدیده خزش در سازندهای نمکی. سومین کنفرانس مهندسی معدن ایران، 9-7 بهمن، یزد، ایران.

فاروق حسینی، م.، محمودی دوم نیاسر، ح.، احمدی، م.، ساعتی، و (1387) تعیین پارامترهای خزشی سنگ­های پی سد گتوند به روش آزمایشگاهی و مقایسه آن با مدلسازی عددی. نشریه دانشکده فنی، دوره 42، شماره 5، ص 577-586.

Agergaard, F. A (2009) Modelling of rock salt creep. Master Thesis, Civil engineering, DTU.

Aubertin, M.; Gill, D. E. and Ladanyi, B (1991)An internal variable method for the creep of Rocksalt. Journal of Rock Mechanics and Rock Engineering,24: 81-97.

Aubertin, M.; Gill, D. E. and Ladanyi, B (1992a) Modeling the inelastic of rock salt.  in Proceeding of the 7th conference on the mechanical behavior of salt, 93-104.

ASTM (1979) Metal Handbook. Fatigue and fracture mechanics, Vol.19.

Bérest, P., Karimi-Jafari, M., and Brouard, B (2005) Transient Creep in Salt Caverns. In Proceedings of 2005 Joint ASME/ASCE/SES Conference on Mechanics and Materials, Louisiana,USA.

Cleach, J. M. L., Ghazali, A., Deveughele, H., and Brulhet, J (1996) Experimental study of the role of   humidity on the thermomechanical behavior of various halitic rocks. In Proceedings of the Third Conference on the Mechanical Behavior of Salt, Clausthal-Zellerfeld: Trans Tech Publications, 231-236.

Cristescu, N. and Hunsche, U (1996) a comprehensive constitutive equation for rock salt determination and application, In Proceedings of the 3th Conference on the Mechanical Behavior of Salt. Clausthal-Zellerfeld: Trans Tech Publications, 191-205.

Cristescu, N., & Hunsche, U (1998) Time effects in rock mechanics. New York: Wiley.

Dreyer, W (1972) The science of rock mechanics. The strength properties of rock, Trans Tech Publication.

Dreyer, W (1981) Crude oil storage in a system of salt caverns. In First Conference on the Mechanical Behavior of Salt, The Pennsylvania State University, Nov. 9±11, 1981. Trans TechPublications,  629-59.

Farmer, I.W., and Gilbert, M.J (1984) Time dependent strength reduction of rock salt, In Proceedings of the First Conference on the Mechanical Behaviour of Salt.  Clausthal-Zellerfeld: Trans Tech Publications,  3-18.

Franssen, R.C.M., and Spiers, C.J (1990) Deformation of polycrystalline salt in compression and in shear at 250-350°C. Deformation Mechanisms. Rheology and Tectonics, Geological Society Special Publication, 45:201-213.

Goodman, R. E (1989) Introduction to rock mechanics. Second Edition, John Wiley and Sons publication.

Hunsche, U (1994) Uniaxial and triaxial creep and failure test on rock, experiment technique and interpretation. In: Cristecu NS, edi-tor. Visco-plastic behavior of geomaterial, Springer Verlag.

ISRM, (1978a) Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci Geomech Abstr, 15: 99–103.

ISRM, (1978b) Suggested methods for determining the strength of rock materials in triaxial compression. Int J Rock Mech Min Sci Geomech Abstr, 15: 47–51.

ISRM (1979) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int J Rock Mech Min Sci, 16: 138–140.

King, M. S (1973) Creep in model pillars of Saskatchewan potash. International Journal of Rock Mechanics and Mining Sciences, 10: 364-371.

Munson, D. E (1979) Constitutive modeling of salt behavior state of the technology. In: Proceedings of 7th International Congress on Rock Mechanics, 1979±1810.

Ozsen Hakan, ozkan ihsan, sensogut cem, (2014) Measurement and mathematical modelling of the creep havior of  Tuzköy rock salt. International Journal of Rock Mechanics & Mining Sciences, 66:128–135.

Pacheo, A (1990) A Method for Evaluating the creep. PhD THESIS, Albert University of Alberta.

Philip, B (1981) In situ experimental and mathematical representation of the behavior of rock salt used in the storage of gas. In: First Conference on the Mechanical Behavior of salt. The Pennsylvania State University, Nov. 9±11, Trans Tech Publications, 453-72.

Singh, D. P (1975)  A Study of Creep of Rocks. International Journal of  Rock Mechanics, Mining Science and Geomechanic Abstracts (Pergamon Press), 12: 271-276.

Wisetsaen, s  Chaowarin , w  Kittitep, F (2015) Effects of loading rate and temperature on tensile strength and deformation of rock salt. International Journal of Rock Mechanics & Mining.

Yang, C. and Yin, J (1999) Experimental investigation of creep behavior of salt rock. International journal of Rock Mechanics and mining science, 233-242.

Zhao, X., Chen, B., Zhao, H., Jie, B., & Ning, Z (2012) Laboratory creep tests for time-dependent properties of a marble in Jinping II hydropower station.  Journal of Rock Mechanics and Geotechnical Engineering, 4(2): 168-176.

Zhang, Y., Xu, W. Y., Shao, J. F., Zhao, H. B., & Wang, W (2015) Experimental investigation of creep behavior of clastic rock in Xiangjiaba Hydropower Project. Water Science and Engineering, 8(1): 55-62.