کانسار چندفلزی ایپک (جنوب اشتهارد): کانه‌زایی اپی‌ترمال نوع سولفیداسیون حدواسط در کمربند آتشفشانی مردآباد- بوئین‌زهرا

نویسندگان

1 دانشجوی کارشناسی‌ارشد، گروه زمین‌شناسی، دانشکده علوم، دانشگاه زنجان، زنجان، ایران

2 دانشیار گروه زمین‌شناسی، دانشکده علوم، دانشگاه زنجان، زنجان، ایران

چکیده

کانسار چندفلزی ایپک در فاصله 14 کیلومتری جنوب اشتهارد (استان البرز) واقع شده و بخشی از کمربند آتشفشانی مردآباد- بوئین‌زهرا است. کانه‌زایی به‌صورت پهنه‌های سیلیسی- سولفیدی (N90E/60-70N) درون توالی توفی و گدازه‌ای ائوسن زیرین- میانی رخ داده و دارای ارتباط فضایی با توده کوارتز مونزودیوریتی- پیروکسن کوارتز مونزودیوریتی ائوسن میانی است. پهنه اصلی کانه‌دار حدود 1 کیلومتر درازا و تا 2 متر پهنا داشته و توسط هاله‌ دگرسانی آرژیلیک حدواسط به ضخامت 3 تا 10 متر دربر گرفته شده است. پیریت، کالکوپیریت، گالن، اسفالریت، پیرولوسیت، پسیلوملان، کوارتز، باریت، کلسیت و سریسیت- ایلیت، کانی‌های تشکیل‌دهنده کانسنگ در کانسار ایپک هستند. سروزیت، اسمیت‌زونیت، مالاکیت، کالکوسیت و گوتیت در اثر فرایندهای برون‌زاد تشکیل شده‌اند. انواع بافت کانسنگ شامل دانه‌پراکنده، رگه- رگچه‌ای، بِرشی، پوسته‌ای، گل‌کلمی، کاکلی، پرمانند، تیغه‌ای، پُرکننده فضای خالی و جانشینی می‌باشد. شش مرحله کانه‌زایی در ایپک قابل تفکیک است که کانه‌زایی مس، سرب و روی به‌صورت رگه‌ها و برش‌های کوارتز- پیریت- کالکوپیریت- گالن- اسفالریت در مرحله دوم رخ داده است. دگرسانی گرمابی شامل دگرسانی‌های سیلیسی، کربناتی، آرژیلیک حدواسط و پروپیلیتیک می‌باشد. الگوی عناصر کمیاب و کمیاب خاکی بهنجار شده به کندریت برای نمونه‌های کانه‌دار، توده کوارتز مونزودیوریتی و سنگ‌های میزبان (کریستال توف و گدازه آندزیت بازالتی)، مشابه است. این امر بیانگر نقش دگرسانی و شسته‌شدن عناصر از سنگ‌های میزبان آتشفشانی در تشکیل کانه‌زایی است. ویژگی‌های کانه‌زایی در کانسار چندفلزی ایپک با کانسارهای اپی‌ترمال نوع سولفیداسیون حدواسط قابل مقایسه است.

کلیدواژه‌ها


عنوان مقاله [English]

Ipak polymetal deposit (south Eshtehard): Intermediate-sulfidation epithermal style mineralization in the Mardabad–Bouinzahra volcanic belt

نویسندگان [English]

  • A. Madadi 1
  • H. Kouhestani 2
  • M. A. A. Mokhtari 2
  • N. Rahmati 1
1 M. Sc. student, Dept., of Geology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
2 Assoc. Prof., Dept., of Geology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
چکیده [English]

The Ipak polymetal deposit is located about 14 km south of Eshtehard (Alborz Province) and is part of the Mardabad-Bouinzahra volcanic belt. Mineralization occurred as silica-sulfide zones (N90E/60-70N) hosted by Early-Middle Eocene tuff and lava units and has a close spatial relationship with the Middle Eocene quartz monzodiorite-pyroxene quartz monzodiorite intrusion. The main ore zone is about 1 kilometer in length and up to 2 meters in thickness and is covered by a 3-to-0-meters1 intermediate argillic alteration halo. Pyrite, chalcopyrite, galena, sphalerite, pyrolusite, psilomelane, quartz, barite, calcite, and sericite-illite are the ore-forming minerals in the Ipak deposit. Cerussite, smithsonite, malachite, chalcocite, and goethite are formed during supergene processes. The ore minerals show disseminated, vein-veinlets, brecciated, crustiform, colloform, cockade, plumose, bladed, vug infill, and replacement textures. Six stages of mineralization can be distinguished at Ipak, where Cu, Pb, and Zn mineralization occurred as quartz-pyrite-chalcopyrite-galena-sphalerite veins and breccias in the second stage. Hydrothermal alteration comprises silicification, carbonate, intermediate argillic, and propylitic alteration. Chondrite–normalized trace elements and REE patterns of ore samples, quartz monzodiorite intrusion, and host rocks (crystal tuff, and basaltic andesite lava) are comparable. This specifies that alteration and leaching of elements from the host volcanic rocks are involved in mineralization. Characteristics of the Ipak polymetal deposit are similar to the intermediate-sulfidation type of epithermal deposits.

کلیدواژه‌ها [English]

  • Cu-Pb-Zn mineralization
  • Intermediate-sulfidation style of epithermal deposit
  • Ipak
  • Eshtehard
  • Mardabad–Bouinzahra
Aghazadeh, M. and Barati, B (2006) Geological map of the Ipak deposit, scale 1: 250,000. AIMCO Co., Tehran.
AIMCO Co (2006) Exploration report of the Ipak deposit. IMIDRO Co., Tehran, 220 pp. (in Persian)
Alavi, M (1991) Tectonic map of the Middle Eastو scale: 1:5,000,000. Geological Survey of Iran.
Albinson, T., Norman, D. I., Cole, D., Chomiak, B (2001) Controls on formation of low-sulfidation epithermal deposits in Mexico: Constraints from fluid inclusion and stable isotope data. New Mines and Discoveries in Mexico and Central America (Eds, Albinson, T. and Nelson, C. E.) Society of Economic Geologists, 1–32. doi.org/10.5382/SP.08.01.
Andreeva, E., Matsueda, H., Okrugin, V. M., Takahashi, R., One, S (2013) Au-Ag-Te mineralization of the low-sulfidation epithermal Aginskoe deposit, Central Kamchatka, Russia. Resource Geology, 63 (4): 337–349. doi.org/10.1111/rge.12013.
Cooke, D. R. and Simmons, S. F (2000) Characteristics and genesis of epithermal gold deposits. Gold in 2000 (Eds, Hagemann, S. G. and Brown, P. E.) Society of Economic Geologists, 221–244. doi.org/10.5382/Rev.13.06.
Ebrahimi, S (2016) Study of Dehbala intensive, related alteration and mineralization (south Buin-Zahra). Unpublished M.Sc. Thesis, Imam Khomeini International University, Qazvin, Iran, 167 pp. (in Persian with English abstract)
Einaudi, M. T., Hedenquist, J. W., Inan, E. E (2003) Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. Volcanic, geothermal, and ore-forming fluids: rulers and witnesses of processes within the earth (Eds, Simmons, S. F. and Graham, I.) Society of Economic Geologists, 285–313. doi.org/10.5382/SP.10.15.
Gemmell, J. B (2004) Low- and intermediate-sulfidation epithermal deposits. 24 Ct Gold Workshop (Eds, Cooke, D. R. Deyel, C. L., Pongratz J.) University of Tasmania, 57–63.
Ghasemi Siani, M., Mehrabi, B., Nazarian, M., Lotfi, M., Corfu, F (2022) Geology and genesis of the Chomalu polymetallic deposit, NW Iran. Ore Geology Reviews, 143: 104763. doi.org/10.1016/j.oregeorev.2022.104763.
Ghorbani, A (2020) Geology, geochemistry, and genesis of Varmazyar Pb-Zn (Ag) mineralization, north of Zanjan. Unpublished M.Sc. Thesis, University of Zanjan, Zanjan, Iran, 88 pp. (in Persian with English abstract).
Ghorbani, A., Kouhestani, H., Mokhtari, M. A. A (2022) Genesis of the Varmazyar Pb–Zn (Ag) occurrence, Tarom-Hashtjin metallogenic belt: Insights from ore geology, geochemistry and fluid inclusion studies. Journal of Economic Geology, 14 (1): 1–38 (in Persian with extended English abstract).
Goodarzi, Z., Moghaddasi, S. J., Barzegar, H (2012) The formation and evolution of Lak polymetal ore deposit based on fluid inclusion studies, southwest of Boein Zahra, Qazvin province. New Findings in Applied Geology, 6 (12): 74–89 (in Persian with English abstract).
Habibi, J (2007) Studies of mineralogy, geochemistry, and genesis of Lak polymetallic deposit in volcanic rocks, SW Buin-Zahra, Qazvin Province. Unpublished M.Sc. Thesis, Tabriz University, Tabriz, Iran, 155 pp. (in Persian with English abstract).
Hedenquist, J. W., Arribas, A., Gonzalez-Urien, E (2000) Exploration for epithermal gold deposits. Gold in 2000 (Eds, Hagemann, S. G. and Brown, P. E.) Society of Economic Geologists, 245–277. doi.org/10.5382/Rev.13.07.
Humphries, S. E (1984) The mobility of the rare earth elements in the crust. Developments in Geochemistry (Ed, Henderson, P.) Elsevier, 317–342.
John, D. A (2001) Miocene and early Pliocene epithermal gold-silver deposits in the northern Great Basin, western USA: Characteristics, distribution, and relationship to magmatism. Economic Geology, 96 (8): 1827–1853. doi.org/10.2113/gsecongeo.96.8.1827.
Kazemi, K., Modabberi, S., Xiao, Y., Sarjoughian, F., Kananian, A (2022) Geochronology, whole-rock geochemistry, Sr–Nd isotopes, and biotite chemistry of the Deh-Bala intrusive rocks, Central Urumieh–Dokhtar Magmatic Arc (Iran): Implications for magmatic processes and copper mineralization. Lithos, 408–409: 106544. doi.org/10.1016/j.lithos.2021.106544.
Khanahmadlou, S (2023) Geology, geochemistry, and genesis of Kourcheshmeh Pb–Zn–Cu mineralization, southwest of Takestan. Unpublished M.Sc. Thesis, University of Zanjan, Zanjan, Iran, 74 pp. (in Persian with English abstract)
Khanahmadlou, S., Kouhestani, H., Mokhtari, M. A. A., Rahmati, N (2023a) Geological and mineralization characteristics of the Kourcheshmeh Pb–Zn–Cu occurrence, SW Takestan, Qazvin Province. 41st Symposium of Geosciences, Geological Survey of Iran, Tehran, Iran (in Persian).
Khanahmadlou, S., Kouhestani, H., Mokhtari, M. A. A., Rahmati, N (2023b)  Kourcheshmeh occurrence: Intermediate-sulfidation epithermal base metal mineralization in the Mardabad-Bouinzahra volcanic belt. 26th Conference of Geological Society of Iran, Urmia University, Urmia, Iran (in Persian)
Khanahmadlou, S., Kouhestani, H., Mokhtari, M. A. A., Rahmati, N (2024) Intermediate-sulfidation epithermal base metal mineralization in the Kourcheshmeh deposit (SW Takestan): Constraints on geology, mineralization, and geochemistry. Journal of Economic Geology, in press (in Persian with extended English abstract)
Kouhestani, H. and Mokhtari, M. A. A (2019) Tashvir ore occurrence, NE Zanjan: Intermediate-sulfidation style of epithermal base metal (Ag) mineralization in the Tarom–Hashtjin zone. Scientific Quarterly Journal of Geoscience, 28 (110): 97–108 (in Persian with English abstract). doi.org/10.22071/gsj.2018.91903.1193.
Kouhestani, H., Mokhtari, M. A. A., Chang, Z (2022a) Fluid inclusion and stable isotope constraints on the genesis of epithermal base metal veins in the Armaqan Khaneh mining district, Tarom–Hashtjin metallogenic belt, NW Iran. Australian Journal of Earth Sciences, 69 (6): 844–860. doi.org/10.1080/08120099.2022.2033320.
Kouhestani, H., Mokhtari, M. A. A., Chang, Z., Johnson, A. C (2018) Intermediate-sulfidation type base metal mineralization at Aliabad–Khanchy, Tarom–Hashtjin metallogenic belt. NW Iran. Ore Geology Reviews, 93: 1–18. doi.org/10.1016/j.oregeorev. 2017.12.012.
Kouhestani, H., Mokhtari, M. A. A., Chang, Z., Qin, K. Z., Aghajani Marsa, S (2022b) Fluid inclusion, zircon U–Pb geochronology, and O–S isotopic constraints on the origin and evolution of ore-forming fluids of the Tashvir and Varmazyar epithermal base metal deposits, NW Iran. Frontiers in Earth Science, 10: 990761. doi.org/10.3389/feart.2022.990761.
Kouhestani, H., Mokhtari, M. A. A., Qin, K. Z., Zhang, X. N (2020) Genesis of the Abbasabad epithermal base metal deposit, NW Iran: Evidences from ore geology, fluid inclusion and O–S isotopes. Ore Geology Reviews, 126: 103752.
Kouhestani, H., Mokhtari, M. A. A., Qin, K. Z., Zhao, J. X (2019a) Fluid inclusion and stable isotope constraints on ore genesis of the Zajkan epithermal base metal deposit, Tarom–Hashtjin metallogenic belt, NW Iran. Ore Geology Reviews, 109: 564–584. doi.org/10.1016/j.oregeorev.2019.05.014.
Kouhestani, H., Mokhtari, M. A. A., Qin, K. Z., Zhao, J. X (2019b) Origin and evolution of hydrothermal fluids in the Marshoun epithermal Pb–Zn–Cu (Ag) deposit, Tarom–Hashtjin metallogenic belt, NW Iran. Ore Geology Reviews, 113: 103087. doi.org/10.1016/j.oregeorev.2019.103087.
Lottermoser, B. G (1992) Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews, 7 (1): 25–41. doi.org/10.1016/0169-1368(92)90017-F.
Mahzi, B (2020) Geology, geochemistry and genesis of Zajkan precious and base metal deposit, Tarom Sofla, Qazvin province. Unpublished M.Sc. Thesis, University of Zanjan, Zanjan, Iran, 90 pp. (in Persian with English abstract)
Mahzi, B., Kouhestani, H., Mokhtari, M. A. A (2022) Investigation of type and genesis of base metal mineralization in the Zajkan deposit (Tarom-e-Sofla, Qazvin Province) using geology, geochemistry, and fluid inclusions data. Journal of Advanced Applied Geology, 12 (3): 365–392 (in Persian with extended English abstract).
McDonough, W. F. and Sun, S (1995) Composition of the Earth. Chemical Geology, 120: 223–253. doi.org/10.1016/0009-2541 (94)00140-4.
Mehrabi, B., Ghasemi Siani, M., Goldfarb, R., Azizi, H., Ganerod, M., Marsh, E. E (2016) Mineral assemblages, fluid evolution and genesis of polymetallic epithermal veins, Gulojeh district, NW Iran. Ore Geology Reviews, 78: 41–57. doi.org/10.1016/j.oregeorev.2016.03.016.
Mikaeili, K., Hosseinzadeh, M. R., Moayyed, M., Maghfouri, S (2018) The Shah-Ali-Beiglou Zn–Pb–Cu (Ag) deposit, Iran: An example of intermediate-sulfidation epithermal type mineralization. Minerals, 8 (4): 148. doi.org/10.3390/min8040148.
Nogole-sadat, M. A. A. and Hoshmandzadeh, A (1984) Geological map of Saveh, scale 1: 250,000. Geological Survey of Iran.
Rolland, Y., Cox, S., Boullier, A. M., Pennacchioni, G., Mancktelow, N (2003) Rare earth and trace element mobility in mid-crustal shear zones: insights from the Mont Blanc Massif (Western Alps). Earth Planet Scientific Letters, 214 (1): 203–219. doi.org/ 10.1016/S0012-821X (03)00372-8.
Sabeva, R., Mladenova, V., Mogessie, A (2017) Ore petrology, hydrothermal alteration, fluid inclusions, and sulfur stable isotopes of the Milin Kamak intermediate sulfidation epithermal Au–Ag deposit in Western Srednogorie, Bulgaria. Ore Geology Reviews, 88: 400–415. doi.org/10.1016/j.oregeorev.2017.05.013.
Saunders, J. A., Hofstra, A. H., Goldfarb, R. J., Reed, M. H (2014) Geochemistry of hydrothermal gold deposits. Treatise on Geochemistry (Eds, Holland, H. D. and Turekian, K. K.) Elsevier-Pergamon, 33–424.
Shahbazi, S., Ghaderi, M., Alfonso, P (2019) Mineralogy, alteration, and sulfur isotope geochemistry of the Zehabad intermediate-sulfidation epithermal deposit. NW Iran. Turkish Journal of Earth Sciences, 28 (6): 882–901. doi.org/10.3906/yer-1902-1.
Simmons, S. F., White, N. C., John, D. A (2005) Geological characteristics of epithermal precious and base metal deposits. One Hundredth Anniversary Volume (Eds, Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., Richards, J. P.) Society of Economic Geologists, 485–522. doi.org/10.5382/AV100.16.
Tale Fazel, E., Alaei Moghtader, N., Oroji, A (2022a) Temperature condition, sulfidation state, and gold formation mechanism of the Atash-Anbar polymetallic deposit (south Qazvin) based on mineralization, alteration, and chemistry of ore minerals. Petrological Journal, 13 (2): 121–150 (in Persian with English abstract). doi.org/10.22108/ijp.2020.124097.1194.
Tale Fazel, E., Moradi, M., Najafi Rashed, S (2022b) Genesis of Eocene volcanic-hosted copper deposits in the Kuh-e-Jarou Mining District (South Eshtehard): constraints from geology, mineralization and fluid inclusions. Journal of Economic Geology, 14 (1): 67–108 (in Persian with English abstract). doi.org/10.22067/econg.2021.52100.88283.
Tale Fazel, E., Nevolko, P. A., Pǎsava, J., Xie, Y., Alaei, N., Oroji, A (2023) Geology, geochemistry, fluid inclusions, and H–O–C–S–Pb isotope constraints on the genesis of the Atash-Anbar epithermal gold deposit, Urumieh–Dokhtar magmatic arc, central-northern Iran: Ore Geology Reviews, 153: 105285. doi.org/10.1016/j.oregeorev.2022.105285.
Thompson, R. N (1982) Magmatism of the British Tertiary volcanic province. Scottish Journal of Geology, 18 (1): 49–107. doi.org/10.1144/sjg18010049.
Wang, L., Qin, K. Z., Song, G. Y., Li, G. M (2019) A review of intermediate sulfidation epithermal deposits and subclassification. Ore Geology Reviews, 107: 434–456. doi.org/10.1016/j.oregeorev.2019.02.023.
White, N. C. and Hedenquist, J. W (1990) Epithermal environments and styles of mineralization: Variations and their causes, and guidelines for exploration. Journal of Geochemical Exploration, 36 (1–3): 445–474.
Whitford, D. J., Korsch, M. J., Porritt, P. M., Craven, S. J. (1988) Rare earth element mobility around the volcanogenic polymetallic massive sulfide deposit at Que River, Tasmania, Australia. Chemical Geology, 68 (1–2): 105–119. doi.org/10.1016/0009-2541 (88)90090-3.
Whitney, D. L. and Evans, B. W (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95 (1): 185–187. doi.org/10.2138/am.2010.3371.
Yilmaz, H., Oyman, T., Sonmez, F. N., Arehart, G. B., Billor, Z (2010) Intermediate-sulfidation epithermal gold-base metal deposits in Tertiary subaerial volcanic rocks, Sahinli/Tespih Dere (Lapseki/Western Turkey). Ore Geology Reviews, 37 (3–4): 236–258. doi.org/10.1016/j.oregeorev.2010.04.001.
Yousefi, M., Rashidnejad Omran, N., Lotfi, M., Bazoobandi, M. H (2017) Copper and gold mineralization features in Deh Bala region, south of Takestan: Open Journal of Geology, 7 (7): 1022-1046. doi.org/10.4236/ojg.2017.77069.
Zamanian, H., Rahmani, S., Zareisahameih, R (2019) Fluid inclusion and stable isotope study of the Lubin-Zardeh epithermal Cu–Au deposit in Zanjan Province, NW Iran: Implications for ore genesis. Ore Geology Reviews, 112: 103014. doi.org/10.1016/j.oregeorev.2019.103014.