کانی‌شناسی و ژئوشیمی اورانیوم، توریم و عناصر نادر خاکی در کانسنگ درونزاد مس- مولیبدن کانسار کال‌کافی، منطقه انارک

نویسندگان

1 استادیار پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی، تهران، ایران

2 پژوهشگر پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی، تهران، ایران

چکیده

کانسار مس- مولیبدن کال‌کافی از نظر تقسیمات ساختاری یکی از ذخایر منطقه معدنی انارک در 76 کیلومتری شمال شرق شهر انارک، در بخش میانی ایران مرکزی است. توده گرانیتوئیدی کال‌کافی توده‌ای بیضی شکل با ابعاد 5/5×8 کیلومتر و سن ائوسن فوقانی است که درون سنگ‌های دگرگونی پرکامبرین، آهک کرتاسه و سنگ‌‌های آتشفشانی ائوسن زیرین- میانی نفوذ کرده است. گرانیت کال‌کافی دارای ماهیت کالک­آلکان پتاسیم بالا و موقعیت تکتونیکی کمان آتشفشانی است. کانی اصلی میزبان اورانیوم و توریم شامل اورانینیت توریم‌‌دار، اورانوتوریت و توریت اورانیوم‌‌دار است. بلورهای اورانینیت و اورانوتوریت به ترتیب حاوی حداکثر 10 درصد توریم و 30 درصد اورانیوم هستند. کانی‌‌های اصلی میزبان عناصر نادر خاکی مونازیت، باستنازیت و پاریسیت است که محتوای سریم، لانتانیم و نئودیمیم در آن­ها به ترتیب از حدود 18 تا 34، 9 تا 20 و 9 تا 13 درصد تغییر می‌کند. میانگین مقدار عناصر اورانیوم، توریم و مجموع نادر خاکی در منطقه کانی‌سازی درونزاد کانسار کال‌کافی به ترتیب 7، 18 و 89 پی‌پی‌ام است. براساس نتایج به دست آمده از این تحقیق، کانی‌سازی مس، مولیبدن و اورانیوم درونزاد در کانسار کال‌کافی از نوع ذخایر اورانیوم نوع نفوذی (زیررده گرانیت- مونزونیت) است.

کلیدواژه‌ها


عنوان مقاله [English]

Mineralogy and Geochemistry of Uranium, Thorium and Rare Earth Elements in Kal-e Kafi Hypogene Copper- Molybdenum Ore Deposit, Anarak District

نویسندگان [English]

  • Kh. Khoshnoodi 1
  • S. Ziapour 2
1 Assist. Prof., Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, Tehran, Iran
2 Researcher, Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, Tehran, Iran
چکیده [English]

Kal-e -Kafi copper-molybdenum deposit is one of the ore fields of Anarak metallogenic district, which is located 76 km northeast of Anarak city, in the middle part of Central Iran. Kal-e -Kafi granitoid with upper Eocene age is an oval mass with dimensions of 5.5 x 8 km that penetrated into Precambrian metamorphic rocks, Cretaceous limestone and lower-middle Eocene volcanic rocks. Kal-e -Kafi granite has high-K calc-alkaline affinity and is formed in the tectonic setting of volcanic arc. The main minerals of uranium and thorium include thorium-bearing uraninite, urano-thorite and uranium-bearing thorite. Uraninite and urano-thorite crystals contain up to 10% of thorium and 30% of uranium, respectively. The main minerals of rare elements include monazite, bastnasite, and parisite, in which the amount of cerium, lanthanum and neodymium varies from 18 to 34, 9 to 20, and 9 to 13 percent, respectively. The average amount of uranium, thorium and total rare earth elements in the hypogene zone of Kal-e -Kafi deposit is 7, 18 and 89 ppm, respectively. On the basis of the results of this investigation, hypogene copper, molybdenum and uranium mineralization support intrusive-type uranium deposit (granite-monzonite sub-type) for Kal-e Kafi ore deposit.

کلیدواژه‌ها [English]

  • Uranium
  • High-K calc-alkaline
  • Kal-e -Kafi copper-molybdenum deposit
Adib, D (1972) Mineralogische untersuchungen in der oxydations-zone der lagerstatte Tschah-Khuni, Anarak, Zentral Iran. PhD dissertation, University Heidelberg, Heidelberg, Germany, 194p.
Ahmadian, J (2012) Geochemistry, Mineral Chemistry and Petrology of Kal-e Kafi Ore-bearing intrusive bodies, E Anarak, PhD dissertation, Tarbiat Modares University, Tehran, Iran (in persian).
Ahmadian, J., Emami, M. H., Ghorbani, M. R., and Murata, M (2007) Mineralogical-geochemical characteristics of potassic granitoid in regard with other granitoid in Kal-e Kafi complex (NE. Anarak). Scientific Quarterly Journal of Geosciences, 16(63): 154-163 (in persian). doi:10.22071/gsj.2008.58534.
Ahmadian, J., Michael, H., McDonald, I., Regelous, M., Ghorbani, M. R., and Murata, M (2009) High magmatic flux during Alpine- Himalayan collision: constraints from the Kal-e-Kafi complex, Central Iran. Bulletin of the Geological Society of America, 121(5-6): 857-868. doi:10.1130/B26279.1.
Amini, B., and Soheili, M (2000) Geological studies and exploration of Au, Cu and other metals in Kal-e Kafi- Khuni area. The Geological Survey and Mineral Exploration of Iran, 115p (in persian).
Austen, G., and Ballantyne, G (2010) Geology and geochemistry of deep molybdenum mineralization at the Bingham Canyon mine, Utah, USA, In: Krahulec, K., and Schroeder, K., (eds.), Tops and Bottoms of Porphyry Copper Deposits: The Bingham and Southwest Tintic Districts, Utah. Society of Economic Geologists, Guidebook Series, 41: 35-49. doi:10.5382/GB.41.004.
Babakhani, A., Radfar, J., and Majidi, J (1999) Remote sensing studies in Kuh-e Khuni- Kuh-e Kal-e Kafi. National Iranian Copper Industries Company, 36p (in persian).
Casetta, F., Ickert, R. B., Mark, D. F., Giacomoni, P. P., Bonadiman, C., Ntaflos, T., Zanetti, A., and Coltorti, M (2020) The Variscan subduction inheritance in the southern Alps sub-continental lithospheric mantle: clues from the Middle Triassic shoshonitic magmatism of the dolomites (NE Italy), Lithos, 17: 380-381. doi:10.1016/j.lithos.2020.105856.
Cuney, M (2014) Felsic magmatism and uranium deposits. Bulletin of Society geology of France, 185 (2): 75-92. doi:10.2113/gssgfbull.185.2.75.
Dahlkamp, F. J (1993) Uranium Ore Deposits, Springer, Berlin, 460p.
Dahlkamp, F. J (2009) Uranium Deposits of the World: Asia, Springer, Berlin, 508p.
Dahlkamp, F. J (2010) Uranium Deposits of the World: USA and Latin America, Springer, Berlin, 535p.
Feng, W., and Zhu, Y (2019) Petrogenesis and tectonic implications of the Late Carboniferous calc-alkaline and shoshonitic magmatic rocks in the Awulale Mountain, Western Tianshan. Gondwana Research, 76: 44-61. doi:10.1016/j.gr.2019.05.009.
Hastie, A. R., Kerr, A. C., Pearce, J. A., and Mitchell, S. F (2007) Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-Co discrimination diagram. Journal of Petroleum, 48: 2341-2357. doi:10.1093/petrology/egm062.
Heidarian, N., and Rasa, I (2011) Evolutioan of geochemistry and economic potential of ore veins in Kal-e Kafi- Khoni area, with regard to Au. Journal of Geotechnical Geology, 7: 17-28 (in persian).
IAEA (2018) Geological Classification of Uranium Deposits and Description of Selected Examples, IAEA-TECDOC-1842, IAEA, Vienna, 430p.
Im, S., Park, J. W., Kim, J., Choi, S. G., and Lee, M. J (2021) Petrogenesis of coeval shoshonitic and high-k calc-alkaline igneous suites in the Eopyeong granitoids, Taebaeksan Basin, South Korea: lithospheric thinning-related Early Cretaceous magmatism in the Korean Peninsula. Lithos. 392-393: 106-127. doi:10.1016/j.lithos.2021.106127.
Irvine, T. N., and Baragar, W. R. A (1971) A guide to the chemical classification of common rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. doi:10.1139/e71-055.
John, D. A., and Taylor, R. D (2016) By-products of porphyry copper and molybdenum deposits, In: Verplanck, P. L., and Hitzman, M. W., (eds.), Rare Earth and Critical Elements in Ore Deposits. Reviews in Economic Geology, 18: 137-164. doi:10.5382/Rev.18.07.
Khoei, N (1983) Introduction on metallogeny of Anarak area. The Geological Survey and Mineral Exploration of Iran, Tehran, 42p (in persian).
Moghaddasi, J., Namdar Mohammadi, T., and Ahmadian, J (2012) Alteration and mineralization in Kal-e Kafi granitoid, NE of Anarak. Iranian Journal of Geology, 6(21): 15-23 (in persian).
Nezampour, H (2005) Geochemical, remote sensing and petrology studies for determination genesis of ore occurrences in Khuni area, Na’in, Central Iran, MSc dissertation, Shahid Beheshti University, Tehran, Iran, 240p (in persian).
Pearce, J. A., and Cann, J. R (1973) Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth and Planetary Science Letters, 19(2): 290-300. doi:10.1016/0012-821X(73)90129-5.
Pearce, J. A., Harris, N. B. W., and Tindle, A. G (1984) Trace element discrimination diagrams for tectonic interpretation of granitic rocks. Journal of Petroleum, 25: 956-983. doi:10.1093/petrology/25.4.956.
Pearce, J. A (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for archean oceanic crust. Lithos, 100: 14-48. doi:10.1016/j.lithos.2007.06.016.
Rice, C. M., Harmon, R. S., and Shepherd, T. J (1985) Central City, Colorado; the upper part of an alkaline porphyry molybdenum system. Economic Geology, 80: 1769-1796. doi:10.2113/gsecongeo.80.7.1769.
Richards, J. P., and Mumin, A. H (2013) Magmatic-hydrothermal processes within an evolving earth: iron oxide- copper- gold and porphyry Cu±Mo±Au deposits. Geology, 41(7): 767-770. doi:10.1130/G34275.1.
Stergiou, C. L., Melfos, V., Voudouris, P., Spry, P. G., Papadopoulou, L., Chatzipetros, A., Giouri, K., Mavrogonatos, C., and Filippidis, A (2021) The geology, geochemistry, and origin of the porphyry Cu-Au-(Mo) system at Vathi, Serbo-Macedonian Massif, Greece. Applied Sciences, 11(2): 479-507. doi:10.3390/app11020479.
Stocklin, J (1968) Structural history and tectonic of Iran: a review. American Association of Petroleum Geologists Bulletin, 52(7): 1229-1258. doi: 10.1306/5D25C4A5-16C1-11D7-8645000102C1865D.
Sun, S. S., and McDonough, W. F (1989) Chemical and isotopic systematic of oceanic basalt: implication for mantle composition and processes. In: Saunders, A.D., and Norry, M.J (eds) Magmatism in the Ocean Basins. Journal of the Geological Society of London, Special Publication, 42: 313-345.
Wones, D. R (1989) Significance of the assemblage titanite+magnetite+quartz in granitic rocks. American Mineralogist, 74 (7-8): 744-749. doi:10.1016/0003-004X/89/0708-0744$02.00.
Yakovenko, V., Chinakov, I., Kokorin, Y., and Krivyakin, B (1981) Detailed geological prospecting in Anarak area (Kal-e Kafi- Khoni locality). Report 13 of Technoexport, Moscow, 53p.
Yang, W. B., Niu, H.C., Shan, Q., Luo, Y., Sun, W.D., Li, C.Y., Li, N.B., and Yu, X.Y (2012) Late Paleozoic calc-alkaline to shoshonitic magmatism and its geodynamic implications, Yuximolegai area, Western Tianshan, Xinjiang. Gondwana Research, 22: 325-340. doi:10.1016/j.gr.2011.10.008.
Yushin, A., and Romanko, E (1981) Isotope-geochemical characteristics of mineral deposits of Anarak area (Central Iran). Report of V/O Technoexport, 16, Moscow, 78p.
Zamboni, D., Gazel, E., Ryan, J. G., Cannatelli, C., Lucchi, F., Atlas, Z. D., Trela, J., Mazza, S. E., and Vivo, B. D (2016) Contrasting sediment melt and fluid signatures for magma components in the Aeolian Arc: implications for numerical modeling of subduction systems. Geochemistry Geophysics Geosystems, 17(6): 2034-2053. doi:10.1002/ 2016GC006301.