پهنه بندی خطر زمین لغزش در امتداد آزادراه خرم آباد-زال در استان لرستان با استفاده از روش تحلیل سلسله مراتبی (AHP)

نویسندگان

1 کارشناس‌ارشد زمین‌شناسی، دانشکده علوم‌زمین، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 دانشیار گروه زمین‌شناسی، دانشکده علوم‌زمین، دانشگاه صنعتی شاهرود، شاهرود، ایران

3 استادیار گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه لرستان، خرم آباد، ایران

چکیده

آزاد راه خرم‌آباد- ‌زال بخشی از محور سراسری تهران - بندر امام خمینی می‌باشد که از لحاظ اقتصادی از جمله راه‌های مهم کشور می‌باشد. بنابراین، این پژوهش به بررسی پهنه­بندی خطر زمین­لغزش در مسیر آزادراه خرم آباد- زال با استفاده از سیستم اطلاعات جغرافیایی GIS پرداخته است. به­منظور پهنه­بندی خطر زمین­لغزش در مطالعه حاضر، از روش تحلیل سلسله مراتبی یا AHP استفاده شده است. بر همین اساس، با توجه به مطالعات و مشاهدات صحرایی و شرایط زمین­شناسی، تعداد 10 عامل تأثیرگذار بر وقوع زمین­لغزش شامل سنگ­شناسی، شیب، جهت شیب، فاصله از گسل، کاربری اراضی، آب و هوا، ارتفاع، فاصله از رودخانه، فاصله از زهکش، و میزان بارندگی انتخاب و در محیط GIS با استفاده از روش AHP، بعد از وزن­دهی، نقشه مربوط به هر لایه تهیه شده است. در نهایت با ترکیب لایه­های مختلف، نقشه پهنه­بندی خطر زمین­لغزش برای منطقه مورد مطالعه تهیه شده است. بر اساس نقشه تهیه شده مشخص شد که 54 درصد از منطقه مورد مطالعه دارای پتانسیل زمین­لغزش زیاد و خیلی زیادی می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Landslide hazard zonation along Khorramabad-Zal Highway in Lorestan province using analytical hierarchy process (AHP)

نویسندگان [English]

  • F. Mirzai 1
  • A. A. Momeni 2
  • Y. Abdi 3
1 M. Sc. of Geology, Earth Sciences Faculty, Shahrood University of Technology, Shahrood, Iran
2 Assoc. Prof., Dept., of Geology, Earth Sciences Faculty, Shahrood University of Technology, Shahrood, Iran
3 Assist. Prof., Dept., of Geology, Faculty of sciences, Lorestan University, Khoramabad, Iran
چکیده [English]

The Khorramabad-Zal Highway is a crucial component of the Tehran-Bander Imam Khomeini axis, which holds significant economic importance in the country. Hence, this study focuses on assessing the risk of landslides in the Khorramabad-Zal Highway through the utilization of geographic information system (GIS). To assess the landslide hazards zonation in this study, the hierarchical analysis method (AHP) was employed. Field studies, observations, and geological conditions were considered to identify 10 factors that influence landslide occurrences. These factors include lithology, slope, aspect, distance from fault lines, land use, climate, altitude, distance from rivers, distance from drainages, and rainfall. Through the AHP method within a GIS environment, each parameter was weighted and maps were generated to represent their individual contributions. In conclusion, the integration of various layers has facilitated the creation of a comprehensive landslide hazard zoning map for the designated study area. The analysis of this map revealed that approximately 54% of the surveyed region possesses a high and very high potential for landslides.

کلیدواژه‌ها [English]

  • Landslide hazard zonation
  • GIS
  • AHP
  • Khorramabad-Zal Highway
Ahmadi, H., Esmali, A., Feiznia, S., Shariat Jafari, M (2004) Mass movement hazard zonation with two multiple regression (MR) and Analytical Hierarchy Process (AHP) methods (case study: Germichay watershed). Iranian J Natural Res, 56 (4) (In Persian).
Ahmadi, H., Mohammadkhan, Sh., Feiznia, S., Ghoddousi, J (2005) A Modeling of Mass Movement Hazard, Case Study: Taleghan Drainage Catchment. Iranian J. Natural Res, 58 (1) (In Persian).
Anderson, S. P., Rengers, F. K., Foster, M. A., Winchell, E. W., Anderson, R. S (2017) Rainfall influence on styles of mass movement. AGUFM EP51B-1638.
Babazadeh, R., Asghari KalJahi, E (2022) Instability risk assessment of open cut trenches of Sungun copper mine by FAHP. Engineering geology Journal, 15 (2): 91-112 (In Persian).
Baharvand, S., Soori, S (2015) Landslide hazard zonation using artificial neural network (Case study: Sepiddasht-Lorestan, Iran). RS & GIS for Natural Resources, 6 (4): 15-31 (In Persian).
Banerjee, P., Ghose, M. K., Pradhan, R (2018) Analytic hierarchy process and information value method-based landslide susceptibility mapping and vehicle vulnerability assessment along a highway in Sikkim Himalaya. Arab J Geosci, 11(7).
Bera, A., Mukhopadhyay, B. P., Das, D (2019) Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim. Nat Hazards, 96(2): 935-959. doi.org/10.1007/s11069-019-03580-w.
Berchiche, & Guettouche (2018) Integration of an MCA-GIS approach for the modelling and assessment of mass movement risk. case of Aїn El Hammam, Basin of Tizi-Ouzou (Algeria). Annals of the University of Oradea, Geography Series/Analele Universitatii Din Oradea, Seria Geografie, 28 (2).
Bourenane, H., Bouhadad, Y., Guettouche, M. S., Braham, M (2015) GIS-based landslide susceptibility zonation using bivariate statistical and expert approaches in the city of Constantine (Northeast Algeria). Bull Eng Geol Environ, 74(2):337–355. doi.org/10.1007/s10064-014-0616-6
Bourenane, H., Guettouche, MS., Bouhadad, Y., Braham, M (2016) Landslide hazard mapping in the Constantine city, Northeast Algeria using frequency ratio, weighting factor, logistic regression, weights of evidence, and analytical hierarchy processmethods. Arab J Geosci, 9 (2): 1–24
Canuti, P., Focardi, P., Garzonio, C. A (1985) Correlation between rainfall and landslides. Bulletin of the International Association of Engineering Geology-Bulletin del Association Internationale de Geologie de lIngénieur, 32(1):49-54. doi.org/10.1007/BF02594765.
Chen, W., Xie, X., Peng, J., Wang, J., Duan, Z. & Hong, H (2017) GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models. Geomatics. Natural Hazards and Risk, 1-24. doi/full/10.1080/19475705.2017.1289250.
Chen, X. Q., Cui, P., Yong, Li., Wan, Y. Z (2013) Emergency response to the Tangjiashan landslide-dammed lake resulting from the 2008 Wenchuan Earthquake, China. Landslides, 8:91-98. doi.org/10.1007/s10346-010-0236-6
Dai, F. C., Lee, C. F., Ngai, Y. Y (2002) Landslide risk assessment and management: an overview. Eng Geol 64: 65-87.
Delonca, A., Gunzburger, Y., Verdel, T (2014) Statistical correlation between meteorological and rockfall databases. Nat Hazards Earth Syst Sci 14(8): 1953–1964.
Demir, G., Aytekin, M., Akgun, A (2015) Landslide susceptibility mapping by frequency ratio and logistic regression methods: an example from Niksar–Resadiye (Tokat, Turkey). Arab J Geosci, 8(3): 1801–1812.
Dou, J., Yunus, A. P., Bui, D. T., Merghadi, A., Sahana, M., Zhu, Z., Chen, C. W., Khosravi, K., Yang, Y., Pham, B. T (2019) Assessment of advanced random forest and decision tree algorithms for modeling rainfall induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci Total Environ, 662:332-346.
Effat, H. A., Hegazy, M. N (2014) Mapping landslide susceptibility using satellite data and spatial multi-criteria evaluation: the case of Helwan District, Cairo. Applied Geomatics, 6(4):215–228. doi.org/10.1007/s12518-014-0137-9
El Jazouli, A., Barakat, A., Khellouk, R (2019) GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenvironmental Disasters, 6(1). doi.org/10.1186/s40677-019-0119-7
Farhadinejad, T., Ghaiumian, J., Shariat Jafari, M., Veiskarami, I (2001) Evaluation of landslide hazard zonation methods in Surkhab Basin, Tehran. Soil Conservation and Watershed Management Research Institute, (In Persian). doi.org/20.1001.1.23222069.1388.16.1.4.4.
Feizizadeh, B., Blaschke, T (2013) GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran. Nat Hazards, 65(3): 2105–2128. doi.org/10.1007/s11069-012-0463-3.
Feyznia, S., Ahmadi, H., Hassanzadeh Nafuti, M (2001) landslide hazard zonation in shalmanrood basin in Gilan province. Iranian Journal of Natural Resources, 54 (3): 207-220 (In Persian).
Gökceoglu, C., Aksoy, H (1996) Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Eng Geol, 44 (1-4):147-161.
Goumrasa, A., Guendouz, M. & Guettouche, M. S (2021) GIS-Based Multi-Criteria Decision Analysis Approach (GIS-MCDA) for investigating mass movements’ hazard susceptibility along the first section of the Algerian North-South Highway. Arab J Geosci, 14, 850. .https://doi.org/10.1007/s12517-021-07124-0
Guettouche (2019) Using a GIS to assess the land movements hazard: application on Berhoum Area, Hodna Basin, Algeria. J Geogr Inf Syst 11(2):166–184.
Guzzetti, F., Cardinali, M., Relchenbach, P., Carrara, A (2000) comparing landslide map: A case study in the upper tiber river basin, central Italy, Environmental management, 25: 247-263. doi.org/ 10.1007/s002679910020.
Haeri, S. M., Samiei, A. H (1997) A new method of sloping areas zoning against the risk of landslides, based on zoning studies in Mazandaran province. Earth Science Journal, 6 (23) (In Persian).
Hong, H., Naghibi, S. A., Pourghasemi, H. R., Pradhan, B (2016) GIS-based landslide spatial modeling in Ganzhou City, China. Arab J Geosci, 9(2):1-26.
Ilinca, V (2009) Rockfall hazard assessment case study: Lotru Valley and Olt Gorge. Revista de Geomorfologie 11: 101–108.
Jebur, M. N., Pradhan, B., Tehrany, M. S (2014) Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sens Environ, 152: 150–165. doi.org/10.1016/j.rse.2014.05.013.
Kanungo, D. P., Arora, M. K., Sarkar, S., Gupta, R. P (2009) Landslide susceptibility zonation (LSZ) mapping: a review. J South Asia Disaster Stud, 2: 81-105.
Komakpanah, A., Chodani, A. J., Montazer al-Qaim, S (1991) Risks caused by landslides in urban areas and the importance of preparing zonation maps. First International Conference on Natural Disasters in Urban Areas. Earthquake Section I, Tehran Studies and Planning Office (In Persian).
Lee, S., Min, K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol, 40 (9): 1095-1113. doi.org/10.1007/s002540100310.
Saaty, T. L (1980) The analytic hierarchy process. McGraw-Hill, New York.
Sabatakakis, N., Koukis, G., Vassiliades, E., Lainas, S (2013) Landslide susceptibility zonation in Greece. Nat Hazards, 65 (1): 523–543. doi.org/10.1007/s11069-012-0381-4.
Shadfar, S., Yamani, M., Ghodousi, Jamal, & Ghayoumian, J (2007) landslide hazard zonation using analytical hierarchy method a case study: Chalkrood catchment. Pajouhesh-Va-Sazandegi, 20(2) (75 In Natural Resources)), 118-126. (In Persian)
Shalmashi, A., Khodadadi, F (2003) An investigation of effective factors on landslide occurrence and landslide hazard zonation (case study: Shirin rood drainage basin - Tajan dam). Iranian Journal of Natural Resources, 57 (1): 3-22 (In Persian).
Shirzadi, A., Bui, D. T., Pham, B. T., Solaimani, K., Chapi, K., Kavian, A., Shahabi, H., Revhaug, I (2017) Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environ Earth Sci, 76 (2). doi.org/10.1007/s12665-016-6374-y.
Shirzadi, A., Saro, L., Hyun Joo, O., Chapi, K (2012) A GIS-based logistic regression model in rockfall susceptibility mapping along a mountainous road: Salavat Abad case study, Kurdistan, Iran. Nat Hazards, 64(2):1639–1656. doi.org/10.1007/s11069-012-0321-3.
Shokrollah, K., karimkhani, A., Mazidi, A (2021) Landslide Risk Zoning using Logistic Regression and Anfis Models in Hashtjin Catchment Area in Ardabil Province. Geography and Sustainability of Environment, 39: 55-73 (In Persian). doi.org/10.22126/ges.2021.6461.2391.
Singh, & Kumar (2017) Landslide hazard mapping along national highway-154A in Himachal Pradesh, India using information value and frequency ratio. Arab J Geosci, 10(24). doi.org/10.1007/s12517-017-3315-3.
Uromeie, A., Aminizadeh, M. R (1398) Landslide hazard zonation in Halilrood watershed. Collection of articles of the second landslide conference, publications of the UNESCO National Commission in Iran, Tehran (In Persian).
Van Westen, C. J., Rengers, N., Soeters, R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards, 30 (3): 399-419.
Varnes, D. J (1978) Landslide Types and Processes. In: Landslides and Engineering Practice.E.B.Eckel (ed). Special Report no.29., Highway Research Board, pp 20-47.
Varnes, D. J (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation, Transportation Research Board special report 247. National Academy Press, National Research Council, Washington, D.C
Yusof, N. M., Pradhan, B., Shafri, H. Z. M., Jebur, M. N., Yusoff, Z (2015) Spatial landslide hazard assessment along the Jelapang Corridor of the North-South Expressway inMalaysia using high resolution airborne LiDAR data. Arab J Geosci, 8(11):9789-9800.