شیمی‌کانی و شرایط تشکیل بیوتیت در گرانیتوئید مسترون، شمال الیگودرز (زون سنندج- سیرجان)

نویسندگان

1 دانشیار گروه زمین‌شناسی، واحد خرم‌آباد، دانشگاه آزاد اسلامی، خرم‌آباد، ایران

2 استادیار گروه زمین‌شناسی، واحد الیگودرز، دانشگاه آزاد اسلامی، الیگودرز، ایران

چکیده

توده نفوذی ناحیه مسترون در شمال شهرستان الیگودرز واقع شده و به لحاظ زمین‌شناسی بخشی از پهنه دگرگونی- ماگمائی سنندج-سیرجان است که در زیرپهنه بیستون قرار دارد. این توده گرانودیوریتی بوده و در آن فابریک‌های S-C  قابل تشخیص است. این توده حاوی درشت­بلورهای کوارتز، آلکالی فلدسپار، پلاژیوکلاز، بیوتیت و پولک‌های موسکویت است. کوارتزها اغلب بی‌شکل با خاموشی موجی هستند و معمولاً بین کانی‌ها رشد نموده‌اند. آلکالی فلدسپار شامل ارتوز، ارتوز پرتیتی و میکروکلین بوده و در بیشتر موارد سریسیتی شده‌اند. بیوتیت‌ها، به رنگ قهوه‌ای و قهوه‌ای متمایل به قرمز و دارای خمیدگی بوده و اغلب در اثر تنش از خود پدیده کینک‌باند نشان می‌دهد. مطالعات ‌شیمی‌بلور کانی بیوتیت نشان می‌دهد که آن­ها غنی از منیزیم و شامل عضو انتهایی سیدروفیلیت-آنیت بوده و در محدوده بیوتیت و خارج از محدوده فلوگوپیت قرار گرفته‌اند. همچنین بیوتیت‌های ناحیه مسترون اغلب از نوع اولیه و ماگمائی بوده و هیچ­یک در محدوده بیوتیت‌های تازه متعادل شده قرار نمی‌گیرند. میانگین دمای تشکیل بیوتیت‌ها ⁰C 639 بوده و در حدفاصل ⁰C 660 تا ⁰C 753 قرار دارد. دامنه تغییرات فشار  با میانگین Kb32/3 نشان‌دهنده تشکیل بیوتیت‌ها در عمق کمتر از 3 کیلومتر بوده و با فشار بدست آمده در منحنی کالیبراسیون فشارسنجی بیوتیت برای سنگ‌های گرانیتی همخوانی دارد. بیوتیت‌های ناحیه مسترون در محدوده بیوتیت سنگ‌های کالک‌آلکالن فرورانشی و در پهنه کوهزائی نوع I قرار گرفته و به کمک داده‌های سنگ کل تأیید شده است. بالا بودن نسبت Fe/Mg در بیوتیت‌ها نشان‌دهنده مگنتیتی بودن گرانیتوئیدهای مسترون است. مقادیر Fe# بیوتیت‌ها در برابر Al با میانگین 2/3 به عنوان میانگین FQM نیز در محدوده گرانیتوئیدهای سری مگنتیتی قرار گرفته و نشان‌دهنده شرایط اکسیدی ماگما هستند. میزان کمّی فشاربخشی اکسیژن در ناحیه مسترون به کمک داده‌های موجود بالا بوده و به میزان 10-10 تا 12-10 بار تخمین زده می‌شود که محیط مناسبی جهت کانی‌سازی طلا و مس در سیستم‌های اپی‌ترمال و پورفیری هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Mineral Chemistry and Formation Biotite Condition in Masteroon Granitoid, North of Aligudarz (Sanandaj-Sirjan Zone)

نویسندگان [English]

  • S. V. Shahrokhi 1
  • E. Darvishi 2
1 Assoc. Prof., Dept., of Geology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
2 Assist. Prof., Dept., of Geology, Aligudarz Branch, Islamic Azad University, Aligudarz, Iran
چکیده [English]

The intrusive mass of Mesteroon area is located in the north of Aligudarz and is part of the Sanandaj-Sirjan magmatic-metamorphic zone. This mass is granodiorite with S-C fabrique. This mass contains megacrysts of quartz, alkali-feldspar, plagioclase, biotite and muscovite flakes. Quartz is often amorphous with wave quenching and usually grown between minerals. Alkali feldspar includes orthoclase, pertitic orthoclase and microcline and in most cases, they are cericitized. Biotites are brown and reddish-brown in color and have curvature and often show kingband phenomenon due to stress. Mineral chemistry studies show that the composition of biotites is rich in magnesium and includes the siderophyllite-anite end member, and they are placed in the range of biotite and outside the range of phlogopite. Also, the biotites of the Mestroon area are often primary and magmatic, and none of them are in the range of newly balanced biotites. The average formation temperature of biotites is 638.48 °C and it is between 659.99 °C and 753.20 °C. The range of pressure changes in the Mestron area with an average of 3.32 kb indicates the formation of biotites at a depth of less than 3 km and is consistent with the pressure obtained in the biotite pressure gauge calibration curve for granite rocks. The biotites of Mesteroon area are located in the biotite range of subduction calc-alkaline rocks and in the type I orogenic zone and have been confirmed with the help of whole rock data. The high Fe/Mg ratio in biotites indicates the magnetite nature of Mesteroon granitoids. The values of Fe# of biotites against Al with an average of 2.3 as the FQM average are also in the range of magnetite series granitoids and indicate the magma's oxide conditions. The amount of oxygen fugacity in Mesteroon area is high with the help of available data and it is estimated to be 10-10 to 10-12 bar, which is a suitable environment for gold and copper mineralization in epithermal and porphyry systems.

کلیدواژه‌ها [English]

  • Biotite
  • Calc-Alkaline
  • Mineral Chemistry
  • Thermobarometry
  • Masteroon
  • Aligudarz
Abdel-Rahman, A. M (1996) Discussion on the comment on nature of biotites in alkaline, calc-alkaline and peraluminous magmas. Journal of Petrology, 37(5): 1031-1035.
Ahmadi-Khalaji, A., Esmaeily, D., Valizadeh, M. V., Rahimpour-Bonab, H (2007) Petrology and Geochemistry of the Granitoid Complex of Boroujerd, Sanandaj-Sirjan Zone, Western Iran. Journal of Asian earth Sciences, 29: 859-877. doi.org/10.1016/j.jseaes.2006.06.005.
Anderson, J. L., Barth, A. P., and Mazdab, J. L.W. F (2008) Thermometers and thermobarometers in granitic systems. Reviews in Mineralogy and Geochemistry, 69(1): 121-142.
Barker, A. J (1990) Interduction to metamorphic textures and microstructures, Blackie and Son Ltd, Glasgow, 170p
Bell, T. H., Johnson, S. E (1989) The role of deformation partitioning in the deformation and recrystallization of plagioclase and k-feldespar in the woodroffe thrust mylonite zone, central Australia. Journal of Metamorphic Geology, 7: 151-168.
Bloodaxe, E. S., Hughes, G. M., Dyar, M. D., Grew, E. S., Guidotti, C (1999) Linking structure and chemistry in the schorl–dravite series. American Mineralogist, 84: 922-928. doi.org/10.2138/am-1999-5-628.
Bozkort, E., Park, K. G (1997) Microstructuraes of deformed grains in the augen gneisses of southern Mederes Massif (Western Turkey) and their tectonic significance. International Journal of Earth Sciences (Geol Rundsch), 86: 103-119.
Brown, W. L., Parsons, I (1981) Alkali feldspars, ordering rates, phase transformations and behaviour diagrams for igneous rocks. Mineralogical Magazine, 53: 25-42.
Cunha, I. R. V., Dall’Agnol, R., Feio, G. R. L (2016) Mineral chemistry and magnetic petrology of the Archean Planalto Suite, carajas Province: Amazonian Craton: implications for the evolution of Ferroan Archean granites. J. S. Am. Earth Sci., 67: 100-121. doi.org/10.1016/j.jsames.2016.01.007.
Dall’Agnol, R., Teixeira, N. P., Rämö, O. T., Moura, C. A. V., Macambira, M. J. B., Oliveira, D. C (2005) Petrogenesis of the Paleoproterozoic, rapakivi, A-type granites of the Archean Carajás Metallogenic Province, Brazil. Lithos, 80 (1-4): 101-129.
Darvishi, E (2015) Petrography, Geochemistry and Petrogenesis of North Azna Granite mass (Marziyan-Kolbor), Sanandaj-Sirjan Zone, Ph.D Thesis, Isfahan University, 185 P. (In persian).
Darvishi, E (2021) The investigation of mineral chemistry of garnet and tourmaline in Marziyan leucogranite (North Azna, Sanandaj-Sirjan Zone). Advanced Applied Geology, 11(1): 12-28. (In persian).
Deer, W. A., Howie, R. A., and Zussman, J (1992) An Introduction to the Rock forming Minerals, (3rd Edition)’ (2013, Berforts Information Press, Stevenage, Hertforshire, UK edn. 2013), London (Longman), 696 p. doi.org/10.3749/canmin.51.4.663.
Douce, A. E. P (1993) Titanium substitution in biotite: an empirical model with applications to thermometry, O2 and H2O barometries, and consequences for biotite stability. Chemical Geology, 108 (1-4): 133-162.
Drake, H., Tullborg, E. L., Page, L (2009) Distinguished multiple events of fracture mineralisation related to far-field orogenic effects in Paleoproterozoic crystalline rocks, Simpevarp area, SE Sweden. Lithos, 110 (1-4): 37-49. doi.org/10.1016/j.lithos.2008.12.003.
Dubosq, R., Schneider, D. A., Camacho, A., Lawley, C. J (2019) Geochemical and geochronological discrimination of biotite types at the Detour Lake gold deposit, Canada. Minerals, 9(10): 596. doi.org/10.3390/min9100596.
Esna-Ashari, A., Hassanzadeh, J., Valizadeh, M. V (2011) Geochemistry of microgranular enclaves in Aligoodarz Jurassic arc pluton, western Iran: implications for enclave generation by rapid crystallization of cogenetic granitoid magma. Mineralogy and Petrology, 101: 195–216.
Esna-Ashari, A., Tiepolo, M., Valizadeh, M. V., Hassanzadeh, J., Sepahi, A. A (2012) Geochemistry and zircon U-Pb geochronology of Aligoodarzgranitoid complex, Sanandaj-Sirjan Zone, Iran. Journal of Asian Earth Sciences, 43: 11-12.
Esna-Ashari, A., Tiepolo, M., Hassanzadeh, J (2016) On the occurrence and implications of Jurassic primary continental boninite-like melts in the Zagros orogeny. Lithos, 258-259: 37-57. doi.org/10.1016/j.lithos.2016.04.017.
Foster, M. D (1960) Interpretation of the composition of trioctahedral micas. United States Geological Survey Professional Paper, 354-B: 11-46.
Gorbatschev, R (1970) Biotites in granites, biotites in gneisses, and the status of biotite as a one-mineral environment indicator. Bull. Geol. Soc. Finland, 42: 23-32.
Harris, C., Faure, K., Diamond, R. E., Scheepers, R (1997) Oxygen and hydrogen isotope geochemistry of S-and I-type granitoids: the Cape Granite suite, South Africa. Chemical Geology, 143 (1-2): 95-114. doi.org/10.1016/S0009-2541(97)00103-4.
Henry, D. J., Guidotti, C. V., Thomson, J. A (2005) The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, 90 (2-3: 316-328. doi.org/10.2138/am.2005.1498.
Hoisch, T. D (1989) A muscovite-biotite geothermometer. American Mineralogist, 74 (5-6): 565-572.
Holdaway, M (2000) Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. American mineralogist, 85(7-8): 881-892. doi.org/10.2138/am-2000-0701.
Ishihara, S (1971) Major molybdenum deposits and related granitic rocks in Japan. Rep. Geolgical Survey of Japan, 239: 1-178.
Ishihara, S (1977) The magnetite-series and ilmenite-series granitic rocks. Mining geology, 27(145): 293-305.
Jiang, Y. H., Jiang, S. Y., Ling, H. F., Zhou, X. R., Rui, X. J., Yang, W. Z (2002) Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: implications for granitoid geneses. Lithos, 63 (3-4): 165-187.
Komarneni, S., Jackson, M. L., Cole, D. R (1985) Oxygen isotope changes during mica alteration. Clays and Clay Minerals, 33: 214-218.
Lalonde, A. E., Bernard, P (1993) Composition and color of biotite from granites; two useful properties in characterization of plutonic suites from the Hepburn internal zone of Wopmay Orogen, Northwest Territories. The Canadian Mineralogist, 31(1): 203-217.
Lovering, T. G (1972) Distribution of minor elements in biotite samples from felsic intrusive rocks as a tool for correlation. (US Government Printing Office, 1972).
Lotfi, M., Shahrokhi, S. V (2004) Cu-Au ore mineralization in Kondor area (N-Aligoudarz) connecting with relavant geodynamic problems of Masterrun granitoids (NE-lorestan province in Iran). 7th conference of geological survey of Iran, Isfahan, Iran-Mining, D.A.C., (2004). (In persian).
Luhr, J. F., Carmichael, I.S., Varekamp, J. C (1984) The 1982 eruptions of El Chichón Volcano, Chiapas, Mexico: mineralogy and petrology of the anhydritebearing pumices. Journal of Volcanology and Geothermal Research, 23 (1-2): 69-108.
Masoudi, F., Yardley, B. W. D., Cliff, R. A (2002) Rb-Sr geochronology of pegmatites, plutonic rocks and a hornfels in the region southwest of Arak, Iran. Islamic Republic of Iran. Journal of Sciences, 13(3): 249-254.
Mohajjel, M., Sahandi, M. R (2001) Tectonic evolution of Sanandaj-Sirjan Zone. Scientific Quarterly journal Geosience, 31-32: 28-49. (In persian).
Nachit, H., Ibhi, A., Ohoud, M. B (2005) Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus Geoscience, 337 (16): 1415-1420. doi.org/10.1016/j.crte.2005.09.002.
Pryer, L. L., Robin, P. Y. F (1995) Retrograde metamorphic reactions in deforming granites and the origin of flame perthite. Journal of Metamorphic Geology, 14: 645-658. doi.org/10.1111/j.1525-1314.1995.tb00249.x.
Rimšaite, J (1964) On micas from magmatic and metamorphic rocks. Beiträge zur Mineralogie und Petrographie, 10(2): 152-183.
Saravani Firouz, M., Kananian, A., Rezaei-Kahkhaei, M., Ghodsi, M. R (2017) Study of mineral chemistry of biotite in Zargoli granitoid, Northwest of Zahedan. New Finding in Applied geology, 11(22): 96-108.
Satir, M., Taubald, H (2001) Hydrogen and oxygen isotope evidence for fluid–rock interactions in the Menderes massif, western Turkey’, International Journal of Earth Sciences, 89: 812-821.
Sepahi Garoo, A. A., Salami, S., Tabrizi, M (2014) Geochemistry of tourmalines in aplitic and pegmatitic dikes from Alvand plutonic and metamorphic rocks of the Hamedan area. Iranian Journal of Crystallography and Mineralogy 22-3: 495-506. (In persian). http://ijcm.ir/article-1-230-en.html
Simpson, C (1985) Deformation of granitic racks acrm the brittle-dude transition. Journal of Structural of Geology, 7: 503-511.
Shelley, D (1993) Igneous and metamorphic rocks under the microscope, classificathon, textures, microstructures and mineral preferred-orientathons. Chapman and Hall, London, 273P.
Solé, J., Cosca, M., Sharp, Z., Enrique, P (2002) 40Ar/39Ar Geochronology and stable isotope geochemistry of Late-Hercynian intrusions from north-eastern Iberia with implications for argon loss in K-feldspar. International Journal of Earth Sciences, 91: 865-881.
Speer, J. A (1984) Micas in igneous rocks. Reviews in Mineralogy and Geochemistry, 13(1): 299-356.
Siivola, J., Schmid, R (2017) List of mineral abbreviation Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. American Mineralogist, Web version 01.02.07.
Shahrokhi, S. V (2002) Ore-control Determinations of Cu-Mineralization and Its Related) Elements at Kondor Area on Part of Aligudarz (NE-Lorestan Province”(, M.Sc. Thesis, North Tehran Branch, Islamic Azad University, Tehran, Iran, 155pp. (In persian).
Shahrokhi, S. V (2009) Genetic of Kondor copper and gold mineralization in Aligudarz area, Lorestan, Iran. 6th European congress on regional geoscientific cartography and information system, Bologna, Italy.
Shahrokhi, S. V., Delfani, H (2019) Geochemistry and source determination of tourmalines in Mollataleb Area (North of Aligoudarz- Iran). Iranian Journal of Crystallography and Mineralogy, 27(2): 385-400. (In persian).
Stocklin, j (1968) Structual history and tectonic of Iran, a review, American association of Petrolium Geologist Bulletine, 52(7): 1229-1258.
Stussi, J., Cuney, M (1996) Nature of biotites from alkaline, calc-alkaline and peraluminous magmas by Abdel-Fattah M. Abdel-Rahman: a comment. Journal of Petrology, 37(5): 1025-1029
Sun, W., Arculus, R. J., Kamenetsky, V. S., and Binns, R. A (2004) Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization, Nature, 431(7011): 975 p. doi.org/10.1038/nature02972.
Uchida, E., Endo, S., and Makino, M (2007) Relationship Between Solidification Depth of Granitic Rocks and Formation of Hydrothermal Ore Deposits. Resource Geology, 57(1): 47–56. doi.org/10.1111/j.1751-3928.2006.00004.x.
Vernon, R. H., Paterson, S. R (2008) How extensive are subsolidus grain-shape changes in cooling granites. Lithos, 105: 42-50. doi.org/10.1016/j.lithos.2008.02.004.
Wones, D. R (1981) Mafic silicates as indicators of intensive variables in granitic magmas. Mining Geology, 31(168): 191-212.
Wones, D. R., Eugster, H. P (1965) Stability of biotite: experiment, theory and application. American Mineralogist, 50: 1228-1272.
Wu, C. M., Cheng, B. H (2006) Valid garnet–biotite (GB) geothermometry and garnet–aluminum silicate–plagioclase–quartz (GASP) geobarometry in metapelitic rocks. Lithos, 89: (1-2): 1-23.
Yang, W. J., Wang, L. K., Zhang, S. L., Xu, W. X (1986) Micas of the two series of granites in south China. Acta Mineral Sin (in Chinese), 6(4): 298-307.
Zhou, J (1986) The origin of intrusive mass in Feng shandong, Hubei province. Acta Petrologica Sinica, 1, 007.