ارزیابی آلودگی فلزی در خاک‌ها و گیاهان بومی منطقه معدنی فرومد (شرق میامی، استان سمنان)

نویسندگان

1 دانش‌آموخته زمین‌شناسی زیست‌محیطی، دانشکده علوم‌زمین، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 استادیار گروه زمین‌شناسی، دانشکده علوم‌زمین، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

تحقیق حاضر با هدف تعیین غلظت و آلودگی عناصر آرسنیک، کروم، نیکل، مس، روی و سرب در خاک‌ها و گیاهان اطراف منطقه معدنی فرومد انجام شده است. منطقه مورد مطالعه در داخل زون افیولیتی شرق ایران قرار گرفته و در آن فعالیت‌های معدنکاری کرومیت به شکل گسترده از اواخر دهه 40 شمسی آغاز گردیده است. برای این منظور، از منطقه مورد نظر به صورت تصادفی 15 نمونه خاک سطحی و 5 گونه گیاه غالب برداشت گردید و غلظت کل فلزات در آن­ها به همراه پارامترهای فیزیکوشیمیایی نمونه‌های خاک با کمک روش‌های استاندارد اندازه‌گیری گردید. بر اساس نتایج به دست آمده میانگین غلظت آرسنیک، کروم، نیکل، مس، روی و سرب در خاک‌های منطقه به ترتیب 90/9، 5/1182، 75/697، 10/32، 73/60 و 51/6 میلی­گرم بر کیلوگرم است. حداکثر غلظت کروم، نیکل و آرسنیک در محدوده معدنکاری و در نزدیکی توده‌های باطله معدنی مشاهده شد. همچنین بر اساس شاخص­های ژئوشیمیایی محاسبه ‌شده (ضریب غنی‌شدگی، زمین‌انباشت و شاخص بار آلودگی) خاک‌های منطقه معدنی فرومد از نظر کروم و نیکل آلودگی بسیار و شدید نشان می‌دهند. بر اساس نتایج روش‌های آماری چندمتغیره (همبستگی و تحلیل مؤلفه اصلی)، فلزات کروم، نیکل، آرسنیک و تا حدی مس دارای منشاء عمدتاً انسانزاد هستند. تعیین سهم منابع انسانزاد به زمین­زاد نیز به طور تقریبی نشان داد که بیش از 70 % غلظت نیکل وکروم، 67 % غلظت آرسنیک و 53 % غلظت مس از منابع انسان­زاد هستند. مقایسه میانگین غلظت فلزات سنگین در نمونه­های گیاه با محدوده سمّی آن­ها نیز نشان داد که کروم در محدوده بی­خطر، فلزات آرسنیک و سرب در محدوده نرمال، مس و روی در محدوده سمّی و در نهایت فلز نیکل فراتر از محدوده سمّی قرار می‌گیرند. در نهایت بر اساس ضرایب بیوشیمیایی (ضرایب انتقال و تمرکز زیستی) می‌توان گیاه درمنه دشتی را به عنوان یک گونه مناسب برای پاک‌سازی خاک‌های آلوده به نیکل در نظر گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

An assessment on metal pollution in soils and native plants in Foromad mining area (East Meyamey, Semnan province)

نویسندگان [English]

  • F. Shahverdi 1
  • A. Qishlaqi 2
1 (Graduated), in environmental Geology, Earth Sciences Faculty, Shahrood University of Technology, Shahrood, Iran
2 Assist. Prof., Dept., of Geology, Earth Sciences Faculty, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

The present study was initiated to assess the concentration and contamination level of arsenic, chromium, nickel, copper, zinc and lead in the soils and native plant species around the Foromad mining area (Eastern Meyamay, Semnan province). 15 surface soil samples and 5 dominant plant species were randomly collected from study area and their total concentration of metals along with the physicochemical parameters of the soil samples were measured using standard methods. The mean concentrations of arsenic, chromium, nickel, copper, zinc and lead in the soils are found as 9.90, 1182.5, 697.75, 32.10, 60.73 and 6.51 mg/kg, respectively. The maximum concentration of chromium, nickel and arsenic was measured in the mining area where the extracted mine wastes are piled. Based on the calculated geochemical indices (enrichment factor, geoaccumulation factor and pollution load index), the soils of Foromad mining area are heavily contaminated in terms of chromium and nickel. The results of multivariate statistical methods (correlation analysis and principal component analysis) indicated that chromium, nickel, arsenic and copper were derived mainly from anthropogenic sources. The calculation of source proportion of metals in the soils also confirmed that more than 70% of nickel and chromium, 67% of arsenic and 53% of the copper contents are roughly contributed from the anthropogenic sources. Comparing the average concentration of heavy metals in plant samples with their corresponding toxic ranges in plants also showed that chromium, arsenic and lead are within the safe and the normal range, respectively, while copper and zinc are within the toxic range and nickel metal is far beyond its toxic range. Based on the calculated biogeochemical indices (BCF and TF), Artemisia species among others can be considered as a potential candidate to remediate the nickel-contaminated soils.

کلیدواژه‌ها [English]

  • Soil
  • Heavy metals
  • Native plant
  • Foromad mining area
  • Pollution indices
Alam, M., Hussain, Z., Khan, A., Khan, M. A., Rab, A., Asif, M (2020) The effects of organic amendments on heavy metals bioavailability in mine impacted soil and associated human health risk. Scientia Horticulturae, 262: 109067.
Alloway, B. J (2013) Heavy metals in soils, Springer Verlag, Dordrecht, 613p.
Bahroodi, A (2001) Report of Geological map of Foromad (1:100000 scale). Geological survey of Iran (in Persian).
Baniadam, F., and Fotovadi, V (2003) A report on economic geology and remote sensing in 1:100000 Foromad map. Potential mining report of Semnan Province (in Persian).
Baltas, H., Sirin, M., Gokbayrak, E., Ozcelik, A. E (2020) A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province, Turkey. Chemosphere, 241: 125015.
Castro, P. É., Vieira Veloso, G., de Arruda, L., Silva, D., Inácio Fernandes-Filho, E., Paulo Ferreira Fontes, M., Mercês Barros Soares, E (2023) Use of modeling to map potentially toxic elements and assess the risk to human health in soils affected by mining activity. CATENA.  doi.org/10.1016/j.catena.2022.106662.
Chapman, H., and Pratt, R (1978) Methods Analysis for Soil, Plant and Water, University of California’s Division of Agriculture and Natural Resources, Los Angeles, 490p.
Chen, R., Han, L., Liu, Z., Zhao, Y.; Li, R., Xia, L., Fan, Y (2022) Assessment of Soil-Heavy Metal Pollution and the Health Risks in a Mining Area from Southern Shaanxi Province, China. Toxics, 10: 385-395.
Eby, N. G (2016) Principles of Environmental Geochemistry, Waveland Press, California, 514p.
Han, F. X. X., Banin, A., Su, Y., Monts, D. L., Plodinec, M. J., Kingery, W. L., Triplett, G (2012) Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften, 89: 497-504.
Hernandez, L., Probst, A., Probst, M. J., Ulrich, E (2003) Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Science of the Total Environment, 312: 195–219.
Jia, X. L., Fu, T. T., Hu, B. F., Shi, Z., Zhou, L. Q., Zhu, Y. W (2020) Identification of the potential risk areas for soil heavy metal pollution based on the source-sink theory. Journal of Hazardous Materials, 393: 122424.
Jiang, F., Ren, B., Hursthouse, A., Deng, R., Wang, Z (2019) Distribution, source identification, and ecological-health risks of potentially toxic elements (PTEs) in soil of thallium mine area (southwestern Guizhou, China). Environmental Science and Pollution Research, 26: 16556–16567.
Kabata-Pendais, A., and Mukherjee, A (2007) Trace elements from soil to human, Springer Verlag, Heidelberg, 576p.
Kabata-Pendias, A, and Pendias, H (2001) Trace Elements in Soils and Plants, CRC Press, Washington, 450p.
Kabata-Pendias, A (2010) Trace Elements in Soils and Plants, CRC Press, Boca Raton, 550p.
Lago-Vila, M., Arenas Lago, D., Vega, F. A., Andrade, M (2014) Phytoavailable content of metals in soils from copper mine tailings (Touro mine, Galicia, Spain). Journal of Geochemical Exploration, 147: 159–166.
Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., Huang, L (2014) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Science of the Total Environment, 468: 843–853.
Liu, Y., Chen, Z., Xiao, T (2022) Enrichment and environmental availability of cadmium in agricultural soils developed on Cd-rich black shale in southwestern China. Environmental Science and Pollution Research, 29: 36243–36254.
Loska, K., Chebual, J., Pleczar, J., Wiechla, D., Kwapulinski, J (1995) Use of environment and contamination factors together with geoaccmulation indexes to elevate the content of Cd, Cu and Ni in the Rybink water reservoir in Poland. Water, Air and Soil Pollution, 93: 347-365.
Lottermoser, B. G (2010) Mine water. In Mine Wastes. Springer Verlag, Heidelberg. 404p.
Meng, Y., Cave, M., Zhang, C (2020) Identifying geogenic and anthropogenic controls on different spatial distribution patterns of aluminum, calcium and lead in urban topsoil of Greater London Authority area. Chemosphere, 238: 124541.
Muller, G (1989) Index of geoaccumulation in sediments of the Rhine River. Geology Journal, 2: 108–118.
Osman, K. T (2013) Soil Degradation, Conservation and Remediation; Springer: New York, 248p.
Özen, Y (2022) Spatial distribution of heavy metals and sources of soil contamination in southern Konya (Turkey): Insights from geochemistry, Pb and Sr–Nd isotope systematics. Environmental Earth Sciences, 81: 285-295.
Radi, N., Hirche, A., Boutaleb, A (2023) Assessment of soil contamination by heavy metals and arsenic in Tamesguida abandoned copper mine area, Médéa, Algeria. Environmental Monitoring and Assessment, 195: doi.org/10.1007/s10661-022-10862-7.
Stefanowicz, A. M., Kapusta, P., Zubek, S., Stanek, M., Woch, M. W (2020) Soil organic matter prevails over heavy metal pollution and vegetation as a factor shaping soil microbial communities at historical Zn-Pb mining sites. Chemosphere, 240: 124922.
Suárez, J. P., Herrera, P., Kalinhoff, C (2023) Generalist arbuscular mycorrhizal fungi dominated heavy metal polluted soils at two artisanal and small − scale gold mining sites in southeastern Ecuador. BMC Microbiology, 23: 42-57.
Sutherland, R. A., Tack, F. M. G., Tolosa, C. A., Verloo, M (2000) Operationally defined metal fractions in road deposited sediment, Honolulu, Hawaii, 29 (5):  1431-1439. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Tomilson, D. C., Wilson, J. G., Harris, C. R., Jeffrey, D. W (1980) Problems in assessment of heavy metals in the estuaries and the formation of pollution index. Helgoland Marine Research, 33: 566-575.
Urik, M., Farkas, B., Migliereni, M. B., Bujdus, M., Mitroova, Z., Kim. H., Matus, P (2021) Mobilisation of hazardous elements from arsenic-rich mine drainage ochres by three Aspergillus species. Journal of Hazardous Materials, 5: 124-137.
Vega, A. S., Arce, G., Rivera, J. I., Acevedo, S. E., Reyes-Paecke, S., Bonilla, C. A., Pastén, P (2022) A Comparative Study of Soil Metal Concentrations in Chilean Urban Parks Using Four Pollution Indexes. Applied Geochemistry, 141: 105230.
Van der Perk, M (2013) Soil and Water Contamination, Taylor & Francis, London, 428p.
Walkley, A. J., Black, I. A (1934) Estimation of soil organic carbon by the chromic acid titration method. Soil Science, 37: 29-38.
Wang, Z., Bai, L., Zhang, Y., Zhao, K., Wu, J., Fu, W (2022) Spatial Variation, Sources Identification and Risk Assessment of Soil Heavy Metals in a Typical Torreya grandis cv. Merrillii Plantation Region of Southeastern China. Science of the Total Environment, 849: 157832.
Wang, F., Wang, F., Yang, H., Yu, J., Ni, R (2023) Ecological risk assessment based on soil adsorption capacity for heavy metals in Taihu basin, China. Environmental Pollution, 316: 120608.
Waris, M., Baig, J. A., Talpur, F. N., Kazi, T. G., Afridi, H. I., Shakeel, S (2023) Estimation of phytoextraction potential of selected halophytes for accumulation of heavy metals from wetland saline soil. Rendiconti Lincei. Scienze fisiche e naturali, 34: 553–562.
Wu, Y., Li, X., Yu, L., Wang, T., Wang, J., Liu, T (2022) Review of Soil Heavy Metal Pollution in China: Spatial Distribution, Primary Sources, and Remediation Alternatives. Resources, Conservation & Recycling, 181: 106261.
Yadav, I. C., Devi, N. L., Singh, V. K., Li, J., Zhang, G (2019) Spatial distribution, source analysis, and health risk assessment of heavy metals contamination in house dust and surface soil from four major cities of Nepal. Chemosphere, 218: 1100–1113.
Zhang, W., Cai, Y., Tu, C., Ma, L. Q (2002) Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Science of the Total Environment, 300: 167177.