ارزیابی فرآیندهای دیاژنزی نهشته های کربناته سازند شهبازان (تاقدیس سرکان، جنوب لرستان)

نویسندگان

1 دانشیار گروه زمین‌شناسی، دانشکده علوم، دانشگاه لرستان، خرم‌آباد، ایران

2 دانشجوی دکترا، گروه زمین‌شناسی، دانشکده علوم، دانشگاه بوعلی‌سینا، همدان، ایران، کارشناس آزمایشگاه مرکزی دانشگاه لرستان، خرم‌آباد، ایران

3 دانش‌آموخته کارشناسی‌ارشد زمین‌شناسی، دانشکده علوم، دانشگاه لرستان، خرم‌آباد، ایران

چکیده

سازند شهبازان به سن ائوسن میانی تا پسین در پهنه وسیعی از حوضه­ی رسوبی لرستان گسترش دارد. ناحیه مورد مطالعه در 75 کیلومتری جنوب شهرستان خرم­آباد واقع شده است. در ناحیه مورد مطالعه سازند شهبازان با ستبرای 73 متر به صورت هم­شیب بر روی سازند آواری کشکان و توسط کربنات­های سازند آسماری به صورت ناپیوسته پوشیده شده است. سنگ­شناسی سازند شهبازان در برش مورد مطالعه شامل سنگ­آهک، سنگ­آهک دولومیتی و دولومیت است. مطالعات پتروگرافی بر روی 63 مقطع نازک منجر به شناسایی چندین فرآیند دیاژنزی از جمله میکریتی شدن (Micritization)، نوریختی (Neomorphism) (افزایشی و کاهشی)، سیمانی شدن (Cementation) (شامل سیمان­های حاشیه­ای هم­ضخامت، رشد اضافی هم­محور، برمحور، هم­بعد، بلوکی، دروزی و فراگیرنده)، فشردگی (Compaction) (مکانیکی و شیمیایی)، انحلال (Dissolution) (وابسته و غیروابسته به فابریک)، جانشینی (Replacement) (آهن­دار شدن، سیلیسی شدن و دلومیتی شدن) گردید. مهمترین فرآیند دیاژنزی در سازند شهبازان دولومیتی شدن می­باشد که به صورت گسترده رخ داده است. این فرآیندها در چهار توالی­ پاراژنتیکی (محیط دریایی، آب شیرین، تدفینی و بالاآمدگی) رخ داده و سه مرحله دیاژنزی ائوژنز (Eogenesis)، مزوژنز (Mesogenesis) و تلوژنز (Telogenesis) برای آن­ها تفسیر شده است. فرآیند نوریختی کاهشی در مرحله ائوژنز در قلمرو محیط دریایی رخ داده است. سیمان حاشیه­ای هم ضخامت و سیمان برمحور در مرحله ائوژنز و در قلمرو دیاژنز دریایی تشکیل شده­اند در صورتی که سیمان­های بلوکی، هم­بعد و فراگیرنده در مرحله مزوژنز و تلوژنز و در قلمرو دیاژنز تدفینی کم عمق و عمیق و طی بالاآمدگی تشکیل شده­اند.  فشردگی در ائوژنز توسط فشار روباره ناشی از نهشت سازند شهبازان ایجاد شده و سپس با نهشت سازندهای آسماری و گچساران توسعه یافته است. بخشی از انحلال در طی دیاژنز تدفینی و بخشی دیگر در طی بالاآمدگی و تاثیر دیاژنز متئوریک رخ داده است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of diagenesis processes of carbonate deposits of Shahbazan Formation (Sarkan anticline, south Lorestan)

نویسندگان [English]

  • I. Maghfouri Moghadam 1
  • M. Sedaghatnia 2
  • A. Bonyadian 3
  • Kh. Mohammadi 3
  • M. Bordbar 3
1 Assoc. Prof., Dept., of Geology, Faculty of Science, Lorestan University, Khorramabad, Iran
2 Ph. D., student, Dept., of Geology, Faculty of Science, Bu Ali Sina University, Hamedan, Iran, Expert of the Central Laboratory of Lorestan University, Khorramabad, Iran
3 M. Sc., student. Dept., of Geology, Faculty of Science, Lorestan University, Khorramabad, Iran
چکیده [English]

The Shahbazan Formation is of middle to late Eocene age and extends over a wide area of ​​the sedimentary basin of Lorestan. The studied area is located 75 km south of Khorram Abad city. In the studied area, the Shahbazan Formation with a thickness of 73 meters is parallel to the Keshkan clastic formation and is discontinuously covered by the carbonates of the Asmari Formation. The lithology of Shahbazan Formation in the study section includes limestone, dolomitic limestone and dolomite. Petrographic studies on 63 thin sections led to the identification of several diagenesis processes, including micritization, neomorphism (increasing and decreasing), cementation (including isopachous rim cement, syntaxial, epitaxial, equate, blocky, druzy and poikilotopic), compaction (physical and chemical), dissolution (dependent and independent of the fabric), replacement (ironing, silicification and dolomitization). The most important diagenesis process in Shahbazan Formation is dolomitization, which has occurred widely. These processes occurred in four paragenetic sequences (marine environment, fresh water, burial and uplift) and three stages of diagenesis eogenesis, mesogenesis and telogenesis have been interpreted for them. The reduction process of neomorphism has occurred in the stage of eogenesis in the region of the marine environment. Isopachous rim cement and epitaxial cement are formed in the eogenesis stage and in the marine diagenesis region, while blocky, equate and poikilotopic cements are formed in the mesogenesis and telogenesis stage and in the region of shallow and deep burial diagenesis. The compaction in eogenesis was created by the overburden pressure caused by the Shahbazan Formation and then developed by the Asmari and Gachsaran formations. Part of the dissolution occurred during burial diagenesis and another part occurred during uplift and impact of meteoric diagenesis.

کلیدواژه‌ها [English]

  • Diagenesis
  • Paragenesis sequence
  • Shahbazan Formation
  • Zagros
  • Lorestan
Abdi, A., Adabi, M. H (2009) Dolomites petrography diagenesis analysis, probable Shahbazan- Asmari formations boundary and facies based on dolomicrite geochemistry, petrographic evidence and statistic methods in Darabi section. Journal of Stratigraphy and Sedimentology Researches, 25(1): 81-100 doi.org/20.1001.1.20087888.1388.25.1.6.8 (in persian). 
Abdolnia, A., Maghfouri Moghadam, I., Baghbani, D (2017) Stratigraphy of the Shahbazan Formation in Lorestan basin. Scientific Quarterly Journal of Geosciences, 26(103): 157- 168. doi.org/10.22071/gsj.2017.46623 (in Persian) 
Adabi, M. H (2009) Multistage dolomitization of upper Jurassic Muzduran Formation, Kopet-Dagh basin, N.E. Iran: Crab. Eva, 24: 16-32.
Ahmad, A. H. M., & Bhat, G. M ( 2006) Petrofacies, provenance and diagenesis of the Dhosa sandstone member ( Chari Formation ) at Ler, Kachch Sub – basin, Western, India, Journal of Asian Earth Science, 27: 857- 872.
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Moni´e, P., Meyer, B., Wortel, R (2011) Zagros orogeny: a subduction-dominated process. Geol. Mag, 148: 692–725.
Alavi, M (2004) Regional Stratigraphy of the Zagros Fold-Thrust Belt of Iran and Its Proforeland Evolution. American Journal of Science, 304: 1-20.
Alavi, M (1994) Tectonics of the Zagros Orogenic Belt of Iran: New Data and Interpretation. Tectonophys, 229: 211–238.
Arosi, A. H., Wilson, M. E. J (2015) Diagenesis and fracturing of a large-scale, syntectonic carbonate platform, Sedimentary Geology, 326: 109–134.
Assadi, A., Honarmand, J., Moallemi, S. A., and Abdollahie-Fard, I (2016) Depositional environments and sequence stratigraphy of the Sarvak Formation in an oil field in the Abadan Plain, SW Iran. Facies, 62 (4): 1-22.
Assadi, A., Rahimpour‐Bonab, H., and Kadkhodaie‐Ilkhchi, R (2018) Integrated rock typing of the grainstone facies in a sequence framework: a case from the Jurassic Arab formation in the Persian Gulf. Acta Geologica Sinica‐English Edition, 92 (4): 1432-1450.
Bahrami, F., Moussavi Harami, S. R., Khanehbad, M., Mahmudi Gharaie, M. H., Sadeghi, R (2014) Facies analysis, depositional environment and effective diagenesis processes on reservoir quality of the Asmari Formation in Ramin Oilfield. Journal of Applied Sedimentology, 4 (4): 16-26 (in Persian).
Baltzer, F., Purser, B. H (1990) Modern alluvial and the deltaic sedimentation in a foreland tectonic setting: the Lower Mesopotamian Plain and the Arabian Gulf. Sedimentary Geology, 4 (3-4): 175-197
Bathurst, R. G. C (1975) Carbonate Sediments and their Diagensis: Developments in sedimentology. 2nd Edition, Elsevier, Amesterdam, 12: 658 p.
Bathurst, R. G. C (1987) Diagenetically enhanced bedding in argillaceous platform limestones: stratified cementation and selective compaction, Sedimentology, 34 (5): 749-778.
Baud, P., Rolland, A., Heap, M., Xu, T., Nicolé, M., Ferrand, T., Reuschlé, T., Toussaint, R., Conil, N (2016) Impact of stylolites on the mechanical strength of limestone. Tectonophysics, 690: 4–20.
Biernacka, J. K., Borysiuk, and Raczynski, P (2005) Zechstein (Ca1) limestone-marl alternations from the North-Sudetic Basin Poland, depositional or diagenetic rhythms?: Geological Quarterly, 49: 1–14.
Borgomano, J., Lanteaume, C., Leonide, P., Fournier, F., Montaggioni, L. F., and Masse, J. P (2020) Quantitative carbonate sequence stratigraphy: Insights from stratigraphic forward models. AAPG Bulletin, 104 (5): 1115-1142.
Butler, I. B., Rickard, D (2000) Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogensulphide, Geochimica et Cosmochimica Acta, 64: 2665–2672.
Cazarin, C. L., Bezerra, F. H. R., Borghic, L., Santosd, R. V., Favoretoc, J., Brode, J. A., Aulerf, A. S., Srivastavab, N. K (2019) The conduit-seal system of hypogene karst in Neoproterozoic carbonates in northeastern Brazil.Mar. Pet. Geol, 101: 90–107.
Choquette, P. W., and James, N. P (1990) Limestones: the burial diagenetic environment. In: Mcllreath, I. A., & Morrow, D. W. (eds.), Diagenesis. Geological Association of Canada, Geoscience Canada, Reprint Series, 4: 75-111.
Cooke, M. L., Simo, J. A., underwood, C. A., and Rijken. P (2006) Mechanical Stratigraphic controls on fracture patterns within carbonates and implications for groundwater flow. Sedimentary Geol, 184: 225-239.
De Graaf, S., Reijmer, J. J. G., Bertotti, G. V., Bezerra, F. H. R., Cazarin, C. L., Bisdom, K., Vonhof, H. B (2017) Fracturing and calcite cementation controlling fluid flow in the shallow-water carbonates of the Jandaíra Formation, Brazil. Mar. Pet. Geol, 80: 382–393.
Dickson, J. A. D (1965) A modified staining technique for carbonate in the thin section: Nature, 205: 587.
Earler, D. V., Nothdurft, L., McNeil, M., and Moras, C. A (2018) Tracing nitrate sources using the isotopic composition of skeletal-bound organic matter from the calcareous green algae Halimeda. Coral Reefs, 37: 1003– 1011. doi.org/10.1007/s00338-018-01742-z.
EL – Ghali, M. A. K., Tajoti, K. G. M., ansorbeh, H., Ogle, N., & Kalin, R, M (2006) Origin and timing of sidrelite cementation upper Ordovician Glacogenic sandstone from the Murzuk basin, SW Libya. Marine and Petroleum Geology, 23: 459- 471.
El- Saiy, A. K., & Jordan, B. R (2007) Diagenetic aspects of tertiary carbonates west of the Northern Oman Mountains, United Arab Emirates. Journal of Asian EARTH Science, 31: 43 – 53.
Emami Meybodi, S. M., Maghfouri Moghadam, I., Sedaghatnia, M., Barmal, A (2022) Microfacies, sedimentary environment and diagenetic processes of carbonate rocks of the Asmari Formation (Chenareh anticline, south Lorestan). Journal of Applies Sedimentology), 10 (20): 73- 91. (in persian).
Fakhari, M (1985) Khurramabad Geological Compilation Map 1/100,000 (Sheet 20813W). National Iranian Oil Company, Tehran.
Farshi, M., Mousavi- Harami, S. R., Mahboubi, A., Khanehbad, M (2017) Facies and diagenesis processes and it effect on distribution on petrophysical properties on reservoir quality of the Asmari Formation in Gachsaran oil field. Journal of Applied Sedimentology, 5(9): 40-57. doi.org/10.22.84/psj.2017.13230.1136. (in pesrian).
Feiznia, S (1998) Carbonate sedimentary rocks. Publication of the Emamreza university, p, 304 (in persian).
Flügel, E (2004) Microfacies of Carbonate Rocks: Analysis Interpretation and Application. Springer-Verlag, Berlin, 976p.
Flügel, E (2010) .Microfacies of Carbonate Rocks: Analysis Interpretation and Application. Springer-Verlag, Berlin, 976p.
Fabricius, I. L., & Borre, M (2007) Stylolites, Prosity, depositional texture, and silicates in Chalk facies sediments. Ontony Jave Plateau – Gorm and Tyra fields, North Sea. Sedimentalogy, 54: 183 – 205.
Folk, R. L., and Siedlecka, A (1974) The Schizohaline environment: its sedimentary and diagenesis fabrics as exemplified by late Paleozoic rocks of Bear Island, Svalbard, Journal of Sedimentary Geology, 11: 1-15.
Folk, R. L., and Land, L. S (1975) Mg/Ca Ratio and Salinity: Two Controls over Crystallization of Dolomite. American Association of Petroleum GeologistsBulletin, 59: 60-68.
Garcia- pichel, F (2006) Plausible mechanisms for the boring on carbonates by microbial protorophs Sedimentary Geology, 125: 29-50.
Goldhaber, M. B (2004) Sulfur – rich sediment, In: Mackezie F. T., (ED.), Sediments, Diagenesis and Sedimentary Rocks, Treatise on Geochemistray. Elsevier, Amsterdam, 257 – 288.
Halley, R. B., and Harris, P. M (1979) Fresh water cementation of a 1, 000 year-old oolite. Jour. Sediment. Res, 49: 969–988.
Hassanzadeh Nemati, M., Mohseni, H., Memarian, M., Yousefi Yeganeh, B., Janbaz, M., Swennen, R (2018) Petrography and geochemical constrain of dolostones of the Shahbazan Formation in Lorestan (Iran). Carbonates and Evaporites.
Heydari, E., & Wade, W (2003) Massive recrystallization of low – Mg calcite at high temperatures in hydrocarbon source rocks, Implication for organic acids as factors in digenesis. American Association of Petroleum Geologists Bulletin, 86: 1285 – 1303.
Hollis, C., Lawrence, D. A., de Periere, M. D., and Al Darmaki, F (2017) Controls on porosity preservation within a Jurassic oolitic reservoir complex, UAE. Marine and Petroleum Geology, 88: 888-906.
James, N. P., and Jones, B (2015) Origin of Carbonate Sedimentary Rocks, Wiley, American Geophysical Union, 464 p.
James, G. A., and Wynd, J. G (1965) Stratigraphic nomenclature of Iranian oil consortium, agreement area, American Association of Petroleum Geologists Bulletin, 49(12): 2182-2245.
Janbaz, M., Mohseni, H., Piryaei, A., Swennen, R., Yousefi Yeganeh, B., Sofiani Sordaghi, R (2018)  Diagenetic processes of the Shahbazan Formation in the east of the Lurestan zone. Scientific Quarterly Journal of Geosciences. 28(109): 67- 82. (in Persian).
Jia, L. Q., Cai, C. F., Jiang, L., Zhang, K.,  Li, H. X., Zhang, W (2016) Petrological and geochemical constraints on diagenesis and deep burial dissolution of the Ordovician carbonate reservoirs in the Tazhong area, Tarim Basin, NW China. Mar. Pet. Geol, 78: 271–290.
Kasih, G. A. A., Chiba, S., Yamagata, Y., Shimizu, Y., & Haraguchi, K (2008) Modeling early digenesis of sediment in Ago Bay, Japan, A comparison of steady sate and dynamic calculation. Ecological Modeling, 215: 40-54.
Krause, S., Liebetrau, V., Leoscher, C., Beohm, F., Gorb, S., Eisenhauer, A., and Treude, T (2018) Marine ammonification and carbonic anhydrase activity induce rapid calcium carbonate precipitation. Geochim. Cosmochim. Acta, 243: 116–132.
Liu, W., Huang, Q. Y., Wang, K.., Shi, S. Y., Jiang, H (2016) Characteristics of hydrothermal activity in the Tarim Basin and its reworking e_ect on carbonate reservoirs. Nat. Gas Ind, 3: 202–208.
Land, L. S (1985) The origin of massive dolomite: Journal of Geological Education, 33: 112-125.
Longman, M. W (1980) Carbonate digenetic textures from near surface digenetic environments. AAPG Bull, 64: 461-487.
Madden, R., and Wilson, M (2013) Diagenesis of a SE Asian Cenozoic carbonate platform margin and its adjacent basinal deposits, Sedimentary Geology, 286 (287): 20–38.
Mazzollo, S. J (1992) Geochemical and neomorphic alteration of dolomite: a review: Carbonates and Evaporites, 7: 21–37.
Messadi, A. M., Mardassi, B., Ouali, J. A., Touir, J  (2018) Diagenetic process as tool to diagnose paleo – environment conditions, bathymetry and oxygenation during Late Paleocene – Early Eocene in the Gafsa Basin. Carbonate and Evaporates, 34: 1-16.
Mirbeik- Sabzevari, K.., Sedaghatnia, M (2022) Petrography and study of dolomitization model of Shahbazan Formation using elemental analysis (Zagros sedimentary basin, south of Lorestan). Journal of Applied sedimentology, 10 (19): 54- 71. (in persian).
Mohseni, H., Abdollahpour, M., Rafiei, B (2012) Petrography and origin of dolomites of Shahbazan Formation (middle to upper Eocene) in east Eslamabade- Gharb (Kermanshah). Journal of New Findings In Applied Geology, 5(10): 1-11 (in persian).
Moore, C. H (1989) Carbonate Diagenesis and porosity. Elsevier, Amsterdam. 338pp. Sediment, 9 (26): 511. Black well Science Oxford.
  Moore, C. H (2013) Carbonate Reservoirs: Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework, Elsevier, Amsterdam. 370 pp.
Moss, S. J., Tucker, M. E (1995) Diagenesis of Barremian-Aptian platform carbonates (the Urgonian Limestone Formation of SE France): near-surface and shallow-burial diagenesis, Sedimentology, 42: 853-874.
Motiei, H (2003) Geology of Iran (Zagros stratigraphy), publication of the geological organization. P, 583. (in persian)
Murris, R. J (1980) Hydrocarbon habitat of the Middle East, American Association of Petroleum Geologists, Memoir, 6: 765-800.
Pettijohn, F. J (1975) Sedimentary Rocks. Harper& Row. New York. 628 pp.
Philip, J. M., and Gari, J (2005) Late Cretaceous heterozoan carbonates: Palaeoenvironmental setting, relationship with rudist carbonates (Provence, south-east France): Sedimentary Geology, 175: 315-337.
Piryaei, A., Feizi, A., Sofiani, H., Hemmat, S., Motamedi, B (2014) Paleogeography of tertiary Zagros deposits. Internal report of oil exploration management. Number GR-2362, P 204. (in Persian).
Purser, B. H (1978) Early diagenesis and the preservation of porosity in Jurassic limestone. Journal of Petroleum Geology, 1: 83-94.
Railsback, L. B (1993) Lithologic controls on morphology of pressure-dissolution surfaces (stylolite’s and dissolution seams) in Paleozoic carbonate rocks from the mideastern United States. Journal of Sedimentary Research, 63 (3): 513–522.
Rahimpour – Bonab, H (2010) Carbonate petrology. Reservoir quality consideration. Publication of Tehran university, 570. (in Persian).
Rao, C. P (1996) Modern Carbonates: Tropical, Temperate and Polar: Introduction to Sedimentology and Geochemistry. Carbonates, Hobart (Tasmania): 206.
Rogen, B., & Fabricius, I. L (2002) Influence of clay and slica on permability and capillary entry pressure of chalk reservoirs in the North sea. Petroleum Geoscience, 8: 287 – 293.
Ronchi, P., Jadoul, F., Ceriani, A., Giulio, A. D., Scotti, P., Ortenzi, A. and Massara, E. P (2011) Multistage dolomitization and distribution of dolomitized bodies in Early Jurassic carbonate platforms (Southern Alps, Italy), Sedimentology, 58: 532–565.
Salifou, I. A. M., Zhang, H., Boukari, I. O., Harouna, M., and Cai, Z (2021) New vuggy porosity models-based interpretation methodology for reliable pore system characterization, Ordovician carbonate reservoirs in Tahe Oilfield, North Tarim Basin. Journal of Petroleum Science and Engineering, (196): 63-79
San Miguel, G., Aurell, M., and Bádenas, B (2017) Diagenetic evolution of a shallow marine Kimmeridgian carbonate ramp (Jabaloyas, NE Spain): implications for hydrocarbon reservoir quality. Arabian Journal of Geosciences, 10 (16): 376.
Seibel, M. J., & James, N. P (2017) Diagenesis of Miocene, incised Valley – filling limestones: Provence Southern France. Sedimentary Geology, 347: 21 – 35.
Scholle, P. A., & Ulmer – Scholle, D. S (2003) A color Guide to the petrolgraphy of carbonate Rocks: Grains, textures, porosity, diagenesis, The American Association of petroleum Geologists Tulsa Pub. 459 p.
Sibley, D. F., Gregg, J. M (1987) Classification of dolomite rock textures. J. Sediment. Petrol, 57: 967–975.
Toussaint, R., Aharonov, E., Koehn, D., Gratier, J. P., Ebner, M., Baud, P., Rolland, A., Renard, F (2018) Stylolites: A review. J. Struct. Geol, 114: 163–195.
Tucker, M. E (2001) Sedimentary Petrology. 3d Edition, Blackwell, Oxford, 260 p.
Tucker, M. E., and Wright, V. P (1990) Carbonate Sedimentology: Blackwell, Oxford, 482 p.
Tucker, M. E., and Wright, V. P (1991) Carbonate Sedimentology. Blackwell Scientific Publications, Oxford, 482p.
Van Buchem, F. S. P., Allan, T., Lausen, G. V., Lotfpour, M., Moallemi, A., Monibi, S., Motiei, H., Pickard, N., Tahmasbi, A. R., Vedrenne, V., Vincent, B (2010) Regional stratigraphic architecture and reservoir types of the Oligo-Miocene deposits in the Dezful Embayment (Asmari and Pabdeh Formations) SW Iran, 329. Geology Society, London. Special Publication, 219–263.
Veizer, J (1983) Chemical diagenesis of carbonates: theory and application of trace element techniques. In Stable isotopes in sedimentary geology: Blackwell Scientific Publications, Oxford, 482p.
Verg´es, J., Emami, H., Garc´es, M., Beamud, E., Homke, S., Skott, P (2019) Zagros foreland fold belt timing across Lurestan to constrain Arabia–Iran collision. In: Saein, A. (Ed.), Tectonic and Structural Framework of the Zagros Fold-Thrust Belt. Elsevier, 29–52.
Walker, K. R., Jernigan, D. G., & Weber, L. J (1990) Petrographic criteria for the recognition of marine, syntaxial overgrowths, and their distribution in geologic time. Carbonates and Evaporites, 5 (2): 141-152.
Warren, J. K (2006) Evaporites: Sediments, Resources and Hydrocarbons. Springer, Berlin, 1036 p.
Westphal, H (2006) Limestone – Marl alternation as environmental archives and the role of early diagenesis: a critical review. International Journal of Science (Geology Rundsch), 95: 947-961.
Wizemann, A., Nandini, S. D., Stuhldreier, I., Sanchez- Noguera, C., Wisshak, M., Westphal, H., Rixen, T., Wild, C., and Reymond, C. E (2018) Rapid bioerosion in a tropical upwelling coral reef. PLoS One, 13, e0202887.
Wu, G. H., Yang, H. J., He, S., Cao, S. J., Liu, X., Jing, B. E (2016) Effects of structural segmentation and faulting on carbonate reservoir properties: A case study from the Central Uplift of the Tarim Basin, China. Mar. Petrol. Geol, 71: 183–197.
Zaid, S. M (2012) Provenance, diagenesis, tectonic setting and geochemistry of Rudies sandstone (lower Miocene), Warda Field, Gulf of Suez, Egypt. J. African Earth Sci, 66: 56- 71.
Zeigler, M. A (2001) Late Permian to Holocene paleofacies evolution of the Arabian plate and its hydrocarbon occurrences. Geo Arabia, 6(3): 445-504.
Zhang, X., Hu, W., Jin, Z., Zhang, J., Qian, Y., Zhu, J., Zhu, D., Wang, X.., and Xie, X (2008)  REE compositions of Lower Ordovician dolomites in Central and North Tarim Basin, NW China: A potential REE proxy for ancient seawater: Geology Sinica, 82(3): 610-621.
Zhang, H., Cai, Z.X., Qi, L. X., Yun, L (2017) Diagenesis and origin of porosity formation of Upper Ordovician carbonate reservoir in northwestern Tazhong condensate field. J. Nat. Gas Sci. Eng, 38: 139–158.