محیط رسوبی و چینه نگاری سکانسی سازند فهلیان در میدان نفتی دارخوین

نویسندگان

1 دانشجوی دکترا، گروه علوم‌زمین، دانشکده علوم پایه، دانشگاه آزاد اسلامی، واحد علوم تحقیقات، تهران، ایران

2 دانشیار گروه علوم‌زمین، دانشکده علوم پایه، دانشگاه آزاد اسلامی، واحد علوم تحقیقات، تهران، ایران

چکیده

سازند فهلیان واقع در میدان نفتی دارخوین با تنوع سنگ­شناسی کم، در بخش­های پایینی مخزن از سنگ­آهک و در بخش­های بالایی از سنگ­آهک دولومیتی تشکیل شده است. سازند فهلیان در چاه دارخوین 33 در ناحیه مورد مطالعه (میدان دارخوین) به صورت همساز سازند گرو را پوشانیده و توسط سازند گدوان به صورت همساز پوشیده شده است. در این پژوهش سازند فهلیان در چاه دارخوین 33 به منظور شناسایی ریزرخساره­ها، محیط­رسوبی، و چینه­نگاری سکانسی مورد مطالعه سنگ­شناسی قرار گرفت. مطالعات سنگ­شناسی به شناسایی 13 رخساره (شامل 12 ریزرخساره کربناته و 1 پتروفاسیس شیلی) در قالب چهار کمربند رخساره­ای شامل پهنه کشندی، تالاب، سد و دریای باز انجامید. نبود ریف­های سدی (که خاص شلف­های لبه­دار هستند)، تبدیل تدریجی ریزرخساره‌ها به­هم و وجود پهنه‌های وسیع کشندی و همچنین نبود ریزرخساره­های کربناته توربیدیتی نشان می‌دهد که توالی کربناته چاه دارخوین 33 در یک سکوی کربناته رمپ با شیب یکنواخت نهشته شده‌ است. بر پایه بررسی ریزرخساره­ها و نگاره گاما و مفاهیم چینه­نگاری سکانسی، سه سکانس رسوبی رده سوم در سازند فهلیان شناسایی شد. بررسی محیط رسوبی و چینه­نگاری سکانسی سازند فهلیان می‌تواند در بازسازی جغرافیای قدیمی منطقه مورد پژوهش در زمان کرتاسه مفید باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Depositional environment abd sequence stratigraphy of the Fahliyan Formation in Darquain Oil Field

نویسندگان [English]

  • F. Hashemi 1
  • M. Aleali 2
1 Ph. D. student, Dept., of Earth Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Assoc. Prof., Dept., of Earth Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

The Fahliyan Formation located in Darquain oil field with low lithological diversity, is composed of limestone in the lower parts of the reservoir and dolomitic-limestone in the upper parts. In the study area the Fahliyan Formation in the Darquain 33 well (in Darquain oil field) has overlain conformably the Garu Formation and overlaid by Gadvan Formation. In this research, Fahlian Formation in Darquain 33 well was studied lithologically in order to identify microfacies, sedimentary environment, and sequence stratigraphy. Lithological studies led to the identification of 13 facies (including 12 microfacies as well as one lithofacies (shale)) belong to 4 facies belts, including tidal flat, lagoon, shoal and open marine. The absence of barrier reefs (which are characteristic of rimmed shelves), the gradual conversion of microfacies to each other, and the presence of vast areas of tidal flat as well as the absence of calciturbidite represent the carbonate sequences of the Darquain 33 well deposited on a carbonate ramp platform. Base on the microfacies, gama ray and sequence stratigraphy concepts, three 3rd sequence in Darquain 33 well was recognized. The investigation of sedimentary environment and sequence stratigraphy of the Fahliyan Formation could be useful in the reconstruction of paleogeography of the study area in Cretaceous time.

کلیدواژه‌ها [English]

  • Fahliyan Formation
  • Darquain Oil Field
  • Depositional environment
  • Sequence stratigraphy
Alavi, M (2007) Stracture of the Zagros fold-thrust belt of Iran. American Journal of
Science, 307: 1064–1095.
Asadi Mehmandosti, E., Abdolmaleki, S., Ghalavand, H (2017) Microfacies, sedimentary environment and diagenesis of the Ilam Formation in an Oilfield of the Abadan plain. Applied Sedimentology, 5(9): 21-39. 10.22084/psj.2017.1871. (in persian).
Avarjani, S., Mahboubi, A., Moussavi-Harami, R., Amiri-Bakhtiari, H., Brenner, R. L (2015) Facies, depositional sequences, and biostratigraphy of the Oligo-Miocene Asmari Formation in Marun oilfield, North Dezful Embayment, Zagros Basin, SW Iran. Palaeoworld, 24: 336–358.
Bachmann, M., Hirsch, F (2006) Lower Cretaceous carbonate platform of the eastern Levant (Galilee and the Golan Heights): stratigraphy and second-order sealevel change. Cretaceous Research, 27: 487-512.
Berbier, M., Hamon, Y., Callot, J. P., Floquet, M., Daniel, J. M (2012) Sedimentary and diagenetic controls on the multiscale fracturing pattern of carbonate reservoir: The Madison Formation (Sheep Mountain, Wyoming, USA). Marine and Petroleum Geology, 29: 50-67.
Carozzi, A. V (1989) Carbonate Rock Depositional Modle: A Microfacies Approach. Prentice-Hall, 604p.
Catuneanu, O (2019) Model‑independent sequence stratigraphy. Earth‑Science Reviews, 188: 312–388.
Dill, H. G., Khishigsuren, S., Melcher, F., Bulgamaa, J., Bolorma, K., Botz, R., Schwarz-Schampera, U (2007) Facies related diagenetic alteration in acustrinedeltaic red beds of the Paleogene Ergeliin Zoo Formation (Erdene Sum area, S. Gobi, Mongolia). Journal of Sedimentary Geology, 181: 1–24.
Dunham‚ R. J (1962) Classification of carbonate rocks according to depositional texture. In: Ham, W. E., (Eds.) Classification of Carbonate Rocks. American Association of Petroleum Geologists Members, 1: 108-121.
Einsele, G (2000) Sedimentary Basin Evolution, Facies, and Sediment Budget (2 ndedition): Springer-Verlag, 292 p.
Embry, A. F., Kloven, J. E (1971) A Late Devonian reef tract on northeastern Banks Island, Northwest Territories, Bulletin Canadian Petroleum Geology, 19: 730-781.
Flugel, E (2010) Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer-Verlag, Berlin, 984p.
Hanneman, D., Lofgren, D., Hasiotis, S. T., Mclntosh, W (2021) Priabonian, late Eocene chronostratigraphy, depositional environment, and paleosol-trace fossil associations, Pipestone Springs, southwest Montana, USA. Acta Palaeontologica Polonica, 67: 5-20.
Haq, B., Hardenhol, J., Vail, P. R (1988) Mesozoic and Cenozoic chronostratigraphy and
cycles of sea-level chang in: Wilgus, C.K., Hasting, B.S., Kendall, C.C.St.C.,
Posamentier, H.W., Ross, C.A., & Van wagoner, J.C., (Eds.), Sea-Level changes: An
integrated approach, SEPM Special Publication, 42: 71-108.
Heydari, E (2008) Tectonics versus eustatic control on supersequence of the Zagros
Mountains of Iran. Tectonophysics, 451: 56–70.
Jamalian, M., Adabi, M. H (2014) Geochemistry, microfacies and diagenetic evidences for original aragonite mineralogy and open diagenetic system of Lower Cretaceous carbonates Fahliyan Formation (Kuh-e Siah area, Zagros Basin, South Iran). Carbonates Evaporites, doi: 10.1007/s13146-014-0211-8.
 Jamalian, M., Adabi, M. H., Moussavi, M. R., Sadeghi, A., Baghbani, D., Ariyafar, B (2011) Facies characteristic and paleoenvironmental reconstruction of the Fahliyan Formation, Lower Cretaceous, in the Kuh-e Siah area, Zagros Basin, southern Iran. Facies, 57: 101–122.
James, G. A., Wynd, J. G (1965) Stratigraphic nomenclature of Iranin Oil Consortium
Agreement Area, American Association of Petroleum Geologists Bulletin, 49 (12): 2182-2245.
Jamilpour, M., Mahboubi, A., Moussavi-harami, R., Khanehbad, M., Hooshmand Koochi, H (2021) Distribution of reservoir electrofacieses in Asmari Formation sedimentary facieses-Qale Nar oilfield. Applied Sedimentology, 9 (18): 1-20. (in persian).
Li, M., Song, H. J., Tian, L., Woods, A. D., Dai, X., Song, H. Y (2018) Lower Triassic deep sea carbonate precipitates from South Tibet, China. Sedimentary Geology, 376: 60–71.
Li, M., Song, H. J., Tian, L., Woods, A. D., Dai, X., Wignall, P. B (2019) Facies and evolution of the carbonate factory during the Permian–Triassic crisis in South Tibet, China. Sedimentology, doi.org/10.1111/sed.12619.
Mirzaee, R., Armon, A (2023) Petrography, sedimentary environment and sequence stratigraphy of Tele Zang formation in Lab Sefid oil field in southwestern Iran. New Finding in Applied Geology. 10.22084/nfag.2023.28059.1569. (in persian).
Mobasher, K., Babaie, H. A (2008) Kinematic significance of fold- and fault-related fracture systems in the Zagros Mountains, southern Iran. Tectonophysics, 451: 156–169.
Motiee, H., 1995. Geology of Iran, Stratigraphy of Zagros. Publications of the Geological Organization of Iran. 536 pp (in persian).
Parvanenejad Shirazi, M., Yazdandost, L., Moradi, Z., 2014. Microfacies and sedimentary environment of Asmari formation in Dashtak anticline (northwest of Kazerun). New Finding in Applied Geology, 8(16): 1-14. (in persian).
Sequero, C., Bádenas, B., Aurell, M (2018) Facies mosaic in the inner areas of a shallow carbonate ramp (Upper Jurassic, Higueruelas Fm, NE Spain). Facies, doi.org/10.1007/s10347-018-0521-8.
Shakib, S. S (1994) Palaeoenvironment and Biostratigraphic significance of Foraminiferal Associations from the Early Cretaceous sedimnts of SW Iran In: Simmons, M. D., (Ed.), Micropalaeonotology and Hydrocarbon Exploration in the Middle East. Chapman and Hall, 127-158.
Sharland, P. R., Archer. R., Casy, D. M., Davies, R. B., Hall, S. H., Hcward, A. P., Horbury. A. D., Simmons, M (2001) Arabian Plate Sequence stratigraphy. Geo Arabia Special Publication, 2: 490 p.
Tesch, P., Reece, R. S., Pope, M. C., Markello, J. R (2018) Quantification of architectural variability and controls in an Upper Oligocene to Lower Miocene carbonate ramp, Browse Basin, Australia. Marine and Petroleum Geology, 91: 432–454.
Tucker, M. E., Wright, V. P (1990) Carbonate Sedimentology. Blackwell, 482 p.
Tucker, M. E (2001) Sedimentary Petrology: an introduction to the origion of sedimentary rocks. Blackwell, Scientific Publication, London, 260 p.
Valle, B., Bó, P. F. D., Mendes, M., Favoreto, J., Rigueti, A. L., Borghi, L., Silva, R (2019) Stratigraphic evolution of a Brazilian carbonate platform during the Cretaceous: the late Albian–early Turonian of the Sergipe–Alagoas Bas, Facies.
Went, D (2020) Lower Cambrian facies architecture and sequence stratigraphy, NW France: framework for evaluation of basin-wide processes of sedimentation. Geological Magazine, 158: 1-18.
Wilson, J. L (1975) Carbonate facies in geologic history. New York Springer, 411 p.
Ziegler, M. A (2001) Late Permian to Holocene Paleofacies Evolution of the Arabian
Plate and its Hydrocarbon Occurrences. GeoArabia, 6(3): 445-504.
Yosefirad, M., Norozpor, H., 2017. Analysis of the sedimentary basin of the Permutrias sequence with a perspective on microfacies in Shurjastan area of Fars province. New Finding in Applied Geology. 11(22), 11-18.  10.22084/nfag.2017.2104. (in persian).