بررسی کیفیت آب زیرزمینی دشت آبرفتی ارومیه با بکارگیری روش های آماری چندمتغیره و فرآیندهای هیدروژئوشیمیایی

نویسندگان

1 دانش‌آموخته دکترا زمین‌شناسی زیست‌محیطی، دانشگاه ارومیه، ارومیه، ایران

2 دانشیار گروه زمین‌شناسی، دانشگاه ارومیه، ارومیه، ایران

3 دانش‌آموخته کارشناسی‌ارشد زمین‌شناسی اقتصادی، دانشگاه ارومیه، ارومیه، ایران

چکیده

در دهه­های اخیر، بهره­برداری بیش از حد از منابع آب­زیرزمینی به دلیل افزایش شهرنشینی و فعالیت­های کشاورزی و همچنین تأثیر تغییرات آب و هوایی، منجر به کاهش سطح و تغییرات هیدروشیمیایی آب­های زیرزمینی شده است. این مطالعه بر روی کیفیت آب زیرزمینی و فرآیندهای هیدروژئوشیمیایی (تکامل و منشاء) در دشت آبرفتی ارومیه، واقع در استان آذربایجان غربی، شمال غربی ایران صورت گرفته است. برای این منظور از نتایج 63 حلقه چاه در بهار و تابستان سال 1400 استفاده شد. از نرم­افزارهای SPSS و GIS جهت تحلیل داده­ها استفاده گردید. براساس نمودار پایپر دو تیپ برای آب­های زیرزمینی شناسایی شد که بر این اساس تیپ و رخساره­ی 67 درصد نمونه­ها بی­کربناته کلسیک و 17 درصد نمونه­ها بی­کربناته منیزیک می­باشد. همبستگی بی­کربنات با پارامتر کل جامدات محلول (858/0=R)، کلر (86/0=R)، سولفات (885/0=R)، منیزیم (922/0=R)، کلسیم (819/0=R)، پتاسیم (532/0=R) و سدیم (756/0=R) می­باشد. بررسی همبستگی­ها بین عناصر و پارامتر کل جامدات محلول (5/0<R) نشانگر برهمکنش­های ژئوشیمیایی مانند فرآیندهای اکسیداسیون-کاهش و تبادل یونی در نمونه­های آب زیرزمینی می­باشد. روش‌های تجزیه و تحلیل مؤلفه‌های اصلی و تحلیل خوشه‌ای سلسله مراتبی به منظور تعریف عوامل کنترل اصلی مؤثر بر هیدروشیمی دشت آبرفتی ارومیه نشان داد که نمونه­های آب دارای تکامل­های متفاوت از هم می­باشند. سه خوشه در تحلیل خوشه­ای، خوشه اول 7/17 درصد نمونه­ها با میانگین کل جامدات محلول 2/1214 میلی­گرم بر لیتر، خوشه دوم 6/31 درصد نمونه­ها با میانگین کل جامدات محلول 9/697 میلی­گرم بر لیتر (بیشترین کانی­سازی) و خوشه سوم 6/51 درصد نمونه­ها با میانگین کل جامدات محلول 6/431 میلی­گرم بر لیتر (کمترین کانی­سازی) به دست آمد. دو مؤلفه­ی اصلی توسط روش آنالیز تحلیل عاملی استخراج شد که 6/75 درصد از کل واریانس را نشان می­دهند. وجود کانی­های تبخیری بخصوص ژیپس و هالیت، نفوذ آب شور دریاچه­ی ارومیه، تبادل یونی و هوازدگی کانی­های کلسیت و دولومیت منشأ عناصر در دشت آبرفتی ارومیه می­باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the quality of underground water in the alluvial plain of Urmia by using multivariate statistical methods and hydrogeochemical processes

نویسندگان [English]

  • Z. Sheikhi Alman Abad 1
  • H. Pirkharrati 2
  • H. Rahmanpour 3
1 Ph. D. (graduated), in environmental geology, Urmia University, Urmia, Iran
2 Assoc. Prof., Dept., of Geology, Urmia University, Urmia, Iran
3 M. Sc. (graduated), in Economic Geology, Urmia University, Urmia, Iran
چکیده [English]

In recent decades, excessive exploitation of underground water resources due to increasing urbanization and agricultural activities, as well as the effect of climate change, has led to a decrease in the level and hydrochemical changes of underground water. This study was conducted on the quality of underground water and hydrogeochemical processes (evolution and origin) in the alluvial plain of Urmia, located in West Azarbaijan province, northwestern Iran. For this purpose, the results of 63 wells in the spring and summer of 1400 were used. SPSS and GIS software were used for data analysis. Based on the Piper diagram, two types of groundwater were identified, according to which the type and facies of 67% of the samples are calcic bicarbonate and 17% of the samples are magnesic bicarbonate. The correlation of bicarbonate with total dissolved solids parameter is (R=0.858), chlorine (R=0.86), sulfate (R=0.885), magnesium (R=0.922), calcium (R=0.819), potassium (R=0.532) and sodium (R=0.756). Examining the correlations between elements and total dissolved solids parameter (R<0.5) indicates geochemical interactions such as oxidation-reduction and ion exchange processes in groundwater samples. The methods of principal component analysis and hierarchical cluster analysis in order to define the main control factors affecting the hydrochemistry of Urmia alluvial plain showed that the water samples have different evolutions. Three clusters were found in the cluster analysis, the first cluster was 17.7% of the samples with an average total dissolved solids of 1214.2 mg/liter, the second cluster was 31.6% of the samples with an average total dissolved solids of 697.9 mg/liter (the most mineralization), and the third cluster was 51.6% of the samples with an average total Dissolved solid of 431.6 mg/liter (the least mineralization). Two main components were extracted by the method of Principal Component analysis, which represent 75.6% of the total variance. The presence of evaporite minerals, especially gypsum and halite, infiltration of salt water from Urmia Lake, ion exchange and weathering of calcite and dolomite minerals are the sources of elements in the alluvial plain of Urmia.

کلیدواژه‌ها [English]

  • Urmia
  • Underground water
  • Principal Component Analysis
Abuzaid, A. S., & Jahin, H. S (2022) Combinations of multivariate statistical analysis and analytical hierarchical process for indexing surface water quality under arid conditions. Journal of Contaminant Hydrology, 248, 104005. doi.org/10.1016/j.jconhyd.2022.104005.
Aleem, M., Shun, C. J., Li, C., Aslam, A. M., Yang, W., Nawaz, M. I., & Buttar, N. A (2018) Evaluation of groundwater quality in the vicinity of Khurrianwala industrial zone, Pakistan. Water, 10: 1321. doi.org/10.3390/w10101321.
Asgharai Moghaddam, A., Nadiri, A. A., & Sadeghi Aghdam, F (2020) Investigation of hydrogeochemical characteristics of groundwater of Naqadeh plain aquifer and heavy metal pollution index (HPI). Scientific Quarterly Journal of Geosciences, 29: 97-110. doi.org/10.22071/gsj.2018.127310.1464 (in persion).
Centeno, N., Cecconello, S. T., Vieira, R. R., Guedes, H. A. S., Reichardt, K., & Timm, L. C (2023) Methodological proposal for the establishment of a water quality index using multivariate analysis based on Brazilian legislation. Environmental Earth Sciences, 82(8).
Chitrakar, P., Baawain, M. S., Sana, A., & Al-Mamun, A (2020) Multivariate statistical technique in the assessment of coastal water quality of Oman. Journal of Environmental Engineering and Science, 15(3): 141-153.
Cho, Y. C., Im, J. K., Han, J., Kim, Sh., Kang, T., & Lee, S (2023) Comprehensive Water Quality Assessment Using Korean Water Quality Indices and Multivariate Statistical Techniques for Sustainable Water Management of the Paldang Reservoir, South Korea. Water, 15(3): 509. doi.org/10.3390/w15030509.
Cloutier, V., Lefebvre, R., Therrien, R., & Savard, M. M (2008) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Journal of Hydrology, 353(3-4): 294-313. doi.org/10.1016/j.jhydrol.2008.02.015.
Dadafarid, S., Hessari., B., Abghari, H (2019) Modelling of interaction between Urmia Lake water level and costal aquifer with GMS, Iranian Water Research Journal, 13: 129-137 (in Persian).
Davis, J. C (1986) Statistics and data analysis in geology. John Wiley & Sons Inc New York, 646 p.
Deutsch, W. J., & Siegel, R (1997) Groundwater geochemistry: fundamentals and applications to contamination. CRC press.
Ebadati, N., Hooshmandzadeh, M. and Behzad, N (2014) A comparison of the correlation Matrix and Man-Kendal correlation statistical methods for analyzing the qualitative parameters of Dez River water. J Magnt Res Rep, 2: 986-1001. (in persion).
El Osta, M., Masoud, M., Alqarawy, A., Elsayed, S., & Gad, M (2022) Groundwater suitability for drinking and irrigation using water quality indices and multivariate modeling in makkah Al-Mukarramah province, Saudi Arabia. Water, 14(3): 483. doi.org/10.3390/w14030483.
Fazabakhsh, S., Rasoulzadeh, A., Ramezani Moghadam, J., & Esmailian, M (2022) Investigation of Groundwater Quality Using Multivariate Statistical Methods in Ardabil Plain Aquifer. Irrigation and Water Engineering, 13(2): 333-353 (in Persian).
Fetter, C. W (2018) Applied hydrogeology. Waveland Press.
Fisher, R. S., & Mullican, III, WF (1997) Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeology journal, 5: 4-16. doi.org/10.1007/s100400050102.
Güler, C., Thyne, G. D., McCray, J. E., & Turner, K. A (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology journal, 10: 455-474. doi.org/10.1007/s10040-002-0196-6.
Habibzadeh, A., Goodarzi, M., & Rafiei, M (2022) Application of Quality Method for Qualitative Flood Analysis in Flood Irrigation (case study north Uremia Lake flood). Hydrogeomorphology, 8 (29): 21-1. 10.22034/hyd.2022.44851.1579 (in Persian).
Hosseininia, M., & Hassanzadeh, R (2023) Groundwater quality assessment for domestic and agricultural purposes using GIS, hydrochemical facies and water quality indices: case study of Rafsanjan plain, Kerman province, Iran. Applied Water Science, 13 (3): 84. (in persion).
Jahin, H. S., Abuzaid, A. S., & Abdellatif, A. D (2020) Using multivariate analysis to develop irrigation water quality index for surface water in Kafr El-Sheikh Governorate, Egypt. Environmental Technology & Innovation, 17: 100532. doi.org/10.1016/j.eti.2019.100532.
Kaiser, H. F (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20 (1): 141–151.
Kavari, B., Esmaeilpour, Y., Mousavi, A. A., Bazrafshan, O., & Holisaz, A (2023). Factor analysis and zoning of qualitative parameters of groundwater resources in Arsanjan Plain, Fars Province. Journal of Range and Watershed Managment, 75 (4): 607-626. (in Persian).
Khelif, S., & Boudoukha, A (2018) Multivariate statistical characterization of groundwater quality in Fesdis, East of Algeria. Journal of Water and Land Development. doi: 10.2478/jwld-2018-0026.
Khosrovani, A., Shiri, Z (2017) Hydrogeochemistry and qualitative assessment of water resources in the Quaternary sediments of Southeast Faruj (North Khorasan) in terms of drinking and industrial uses, Quatarnary Journal of Iran, 3 (3): 265-276 (in Persian).
Kokbeinjad, A., Mohammadzadeh, V., Soleimani, M (2015) Survey of qualitative changes of underground water located in Quaternary sediments of Urmia Plain, Quantitative Geomorphology Research, Year, 5 (3): 93-110 (in Persian).
Kshetrimayum, K. S., & Laishram, P (2020) Assessment of surface water and groundwater interaction using hydrogeology, hydrochemical and isotopic constituents in the Imphal river basin, Northeast India. Groundwater for sustainable development, 11: 100391. doi.org/10.1016/j.gsd.2020.100391.
Li, X., Wu, H., Qian, H., & Gao, Y (2018) Groundwater chemistry regulated by hydrochemical processes and geological structures: a case study in Tongchuan, China. Water, 10(3): 338. doi.org/10.3390/w10030338
Martins, M. A., Tomasella, J., & Dias, C. G (2019) Maize yield under a changing climate in the Brazilian Northeast: Impacts and adaptation. Agricultural water management, 216: 339-350. doi.org/10.1016/j.agwat.2019.02.011.
Mir, R. A., & Gani, K. M (2019) Water quality evaluation of the upper stretch of the river Jhelum using multivariate statistical techniques. Arabian Journal of Geosciences, 12: 1-19. doi.org/10.1007/s12517-019-4578-7.
Mohammadzadeh, H., Bonyabadi, M., & Jangjoo, F (2021) Investigating the Source and Factors Affecting Sulfate Concentration and Isotopic (d 34S andd 18O) Variations in Water Resources of Sarpol-e Zahab Region. Water and Soil, 35 (5): 645-658. (in Persian).
Mostafazadeh, R., Haji, K., Azarmdel, H., & Ghasemi, A (2022) Determining the Important stations and Physicochemical Parameters of Surface water Quality Measurement in Gorgan-Rud Basin (Iran) Using Multivariate Statistical Techniques. Irrigation and Water Engineering, 13 (1): 421-439. (in persion).
Pophare, A. M., Lamsoge, B. R., Katpatal, Y. B., & Nawale, V. P (2014) Impact of over-exploitation on groundwater quality: A case study from WR-2 Watershed, India. Journal of earth system science, 123: 1541-1566. doi.org/10.1007/s12040-014-0478-0.
Rao, N. S., & Chaudhary, M (2019) Hydrogeochemical processes regulating the spatial distribution of groundwater contamination, using pollution index of groundwater (PIG) and hierarchical cluster analysis (HCA): a case study. Groundwater for Sustainable Development, 9: 100238. doi.org/10.1016/j.gsd.2019.100238
Samtio, M. S., Jahangir, T. M., Mastoi, A. S., Lanjwani, M. F., Rajper, R. H., Lashari, R. A., Noonari, M. W (2023) Impact of rock-water interaction on hydrogeochemical characteristics of groundwater: Using multivariate statistical, water quality index and irrigation indices of chachro sub-district, thar desert, sindh, Pakistan. Groundwater for Sustainable Development, 20: 100878. doi.org/10.1016/j.gsd.2022.100878.
Sanei Sistani, S (2019) The effect of the moon's gravity on earthquakes in Iran from 1300 to 1396, Master thesis of University of Sistan and Baluchistan (in Persian).
Selmane, T., Dougha, M., Hasbaia, M., Ferhati, A., & Redjem, A (2022) Hydrogeochemical processes and multivariate analysis for groundwater quality in the arid Maadher region of Hodna, northern Algeria. Acta Geochimica, 41 (5): 893-909. doi.org/10.1007/s11631-022-00553-y.
Shrestha, S., Kazama, F (2007) Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Journal of Environmental Modeling & Software, 22 (4): 464-475. doi.org/10.1016/j.envsoft.2006.02.001.
Yenehun, A., Dessie, M., Azeze, M., Nigate, F., Belay, A. S., Nyssen, J., Walraevens, K (2021) Water resources studies in headwaters of the Blue Nile Basin: a review with emphasis on lake water balance and hydrogeological characterization. Water, 13 (11): 1469. doi.org/10.3390/w13111469.
Zakaria, N., Anornu, G., Adomako, D., Owusu-Nimo, F., & Gibrilla, A (2021) Evolution of groundwater hydrogeochemistry and assessment of groundwater quality in the Anayari catchment. Groundwater for Sustainable Development, 12: 100489. doi.org/10.1016/j.gsd.2020.100489.