ارزیابی آلودگی خاک‌های کشاورزی حومه شهرستان گرگان به فلزات سنگین و ذرات میکروپلاستیک

نویسندگان

1 دانشجوی کارشناسی‌ارشد زمین‌شناسی، دانشکده علوم‌زمین، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 استادیار گروه زمین‌شناسی، دانشکده علوم‌زمین، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

هدف اصلی این پژوهش ارزیابی غلظت، شدت آلودگی، منشاء و خطر سلامتی فلزات سنگین و ذرات میکروپلاستیک در خاک‌های کشاورزی حومه شهرستان گرگان می‌باشد. به این منظور، 21 نمونه خاک سطحی کشاورزی (‌عمق 30-0 سانتی‌متر) برداشت شد. ویژگی‌های فیزیکوشیمیایی نمونه‌های خاک، غلظت فلزات سنگین، مقدار و خصوصیات ذرات میکروپلاستیک با استفاده از روش­های استاندارد بررسی شد. نتایج به دست آمده نشان می­دهد که بافت نمونه‌های خاک مورد مطالعه غالباً لوم رسی- شنی و لوم شنی، pH نمونه‌ها کمی قلیایی تا متوسط قلیایی، میانگین درصد کربنات و ماده آلی نمونه‌ها به ترتیب 8/19 و 2/1، و میانگین ظرفیـت تبادل کاتـیونی نـمونه‌ها 7/18 میلی‌اکی­والان بر 100 گرم می­باشد. میانگین غلظت عناصر مس، روی، کروم، منگنز، کبالت، آهن، نیکل و آنتیموان در نمونه‌های خاک، از میانگین خاک‌های جهانی بیشتر است، و میانگین غلظت عناصر آرسنیک، سرب و کادمیم کمتر از این استاندارد می­باشد. خطر سلامتی غیرسرطانزایی کروم از سه راه مواجهه بلع، استنشاق و تماس پوستی نسبت به دیگر عناصر مورد مطالعه بیشتر، و خطر غیرسرطانزایی همه عناصر در رده سنی کودکان بیشتر از بزرگسالان است. همچنین فلز کروم ‌در کودکان و بزرگسالان دارای بیشترین ریسک سرطانزایی است. ذرات میکروپلاستیک در نمونه‌های خاک به شکل­های رشته‌ای، قرصی، صفحه‌ای و کروی حضور دارند و ذرات با اندازه بزرگ­تر از 1000 میکرومتر بیش­ترین فراوانی را دارا می‌باشند. بر اساس نتیجه FT-IR، ذرات میکروپلاستیک عمدتاً از پلیمر پلی‌اتیلن که مرتبط با فعالیت‌های کشاورزی است تشکیل شده­اند. با توجه به نتایج حاصل از این پژوهش، فعالیت‌ کشاورزی مهم‌ترین منبع آلودگی خاک حومه شهرستان گرگان می‌باشد و می­تواند به بروز خطرات سلامتی در ساکنان منطقه منجر شود.                                                                                      

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of soils pollution in suburb of Gorgan city to heavy metals and microplastics

نویسندگان [English]

  • R. Mohammadi Rad 1
  • G. Forghani Tehrani 2
1 M. Sc. student of Geology, Earth Sciences Faculty, Shahrood University of Technology, Shahrood, Iran
2 Assist. Prof., Dept., of Geology, Earth Sciences Faculty, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

The present study aims to evaluate the concentration, level of pollution, source, and health risk induced by heavy metals and microplastic particles in the agricultural soils of the Gorgan city suburb. For this purpose, 21 topsoil samples (0-30 cm) were collected. Soil’s physicochemical parameters, concentration of heavy metals, and the quantity and general characteristic of microplastic particles (were investigated using standard methods. The obtained results show that the texture of the samples is clay-sand loam and sandy loam. PH of the samples is slightly alkaline to moderately alkaline, the average contents of carbonate and organic matter are 19.8 % and 1.2 %, respectively, and the average cation exchange capacity of the samples is 18.7 meq/100g. While the average concentration of Cu, Zn, Cr, Mn, Co, Fe, Ni, and Sb are higher than the world soil average composition, the average contents of As, Pb, and Cd are comparable or lower than the standard values.  Human health risk assessment shows that among the studied elements, Cr has the highest carcinogenic and non-carcinogenic risks through ingestion, inhalation, and dermal contact routes, for both children and adults. Microplastics are present in all soil samples in the form of fibrous, pellet, fragmental and spherical, and and most particles are bigger than 1000 μm. FT-IR analysis indicates that micrometers are polymers that are mainly composed of polyethylene, pointing to the agricultural source of microplastics particles. The results of this study show that agricultural activity is the most important source of soil pollution in the suburbs of Gorgan city and can induce health risks to the residents of the study area. 

کلیدواژه‌ها [English]

  • Heavy metals
  • Microplastic
  • Soil pollution
  • Gorgan
Alloway, B. J (2012) Heavy Metals in Soils, Trace Metals and Metalloids in Soils and their Bioavailability, 613p.                                                                                                                                                                        
Anderson, J. C., Park, B. J., Palace, V. P (2016) Microplastics in aquatic environments: implications for Canadian ecosystems. Environmental Pollution Bulletin, 218: 269-280.                                                                                 
Atafar, Z., Mesdaghinia, A., Nouri, J., Homaee, M., Yunesian, M., Ahmadimoghaddam, M., Mahvi, A. H (2010) Effect of fertilizer application on soil heavy metal concentration. Environmental Monitoring and Assessment, 160: 83-89.                                                                                                                                                                  
ATSDR (2005) Toxicological profile of nickel. Atlanta, GA: Agency for Toxic Substances and Disease Registry.                                                                                                                                                                      
Baran, A., Cayci, G., Kutuk, C., and Hartman, R (2001) The effect of grape marc as growing medium on growth of hypostases plant. Bioresource Technology, 78: 103-106 
Bell, F. G (2007) Engineering Geology, Butterwotth-Heinemann, Oxford, UK, 581p.
Bradel, H. B (2005) Heavy metals in the Enviroment: Origin, Interaction and Remediation.  Academic Press, New York., 6: 283p.
Bartlett, R. J., Kimble, B. R (1976) Behavior of chromium in soils: Oxidation. Journal of Environmental Quality, 8: 31-35.
Campanale, C., Stock, F., Massarelli, C., Kochleus, Ch., Bagnuolo, G., Reifferscheid, G., Uricchio, V. F (2019) Microplastics and their possible sources: The example of Ofanto river in Southeast Italy, Environmental Pollution, Journal Preproof, 258: 113284.  
Corradini, F., Meza, P., Eguiluz, R., Casado, F., Huerta-Lawanga, E., Geissen, V (2019) Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of The Total Environment, 671: 411-420.  
Domingo, J. L (2009) Vanadium: a review of the reproductive and development toxicology. Reproductive Toxicology, 10: 175-182.  
Dris, R., Gasperi, J., Rocher, V., Saad, M., Renault, N., Tassin, B (2015) Microplastic contamination in an urban area-a case study in greater Paris. Environmental Chemistry, 12: 592-599.
Eby, N. G (2004) Principles of Environmental Geochemistry. Brooks Cole, New York., 528p.                                        
Emsley, J (2001) Chromium. Nature’s building blocks: An A-Z guide to the elements. Oxford: Oxford University Press.   
Fazel valipour, M. E (2022) Investigation of Heavy metals contamination and their origin in soil region JafarAbad, southwest of Kashmar, Khorasan Razavi province. New Findings in Applied Geology, 16 (32): 125-138.
Filella, M., Belzile, N. A., Chen, Y. W (2002) Antimony in the environment: A review focused on natural waters I. Occurrence. Earth-Science Review, 57: 125-176                                                                                                    
Flynn, H. C., Meharg, A. A., Bowyer, P. K., Paton, G. I (2003) Antimony bioavailability in mine soils. Environmental Pollution, 124: 93-100.                                                                                                                         
Food and Agricultural Organization, FAO (1974) The Euphrates pilot irrigation project. Methods of soil analysis, Gadeb Soil Laboratory (A laboratory manual). Food and Agriculture Organization, Rome, Italy.
Franco, A., Schuhmacher, M., Roca, E., Domingo, J. L (2006) Application of cattle manura as fertilizer in pastureland: estimating the incremental risk due to metal accumulation employing a multicompartment model. Environmental International, 32: 724-732.                                                                                                                   
Gorce, J. P and Spells, S. J (2002) Structural information from progression bands in the FTIR spectra of Long chain n-alkanes. Polymer, 43(14): 4043-4046.                                                                                                            
Grzebisz, W., Ciesla, L., Komisarek, J., Potarzycki, J (2002) Geochemical assessment of heavy metals pollution of urban soils. Environmental Studies, 11: 493-499.                                                                                                  
Gu, F., Guo, J., Zhang, W., Summers, P.A., Hall, P (2017) From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study. Science of the Total Environment, 601-602: 1192-1207.
He, D., Luo, Y., Lu, S., Liu, M., Song, Y., Lei, L (2018) Microplastics in soils: Analytical methods pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry, 109: 163-172.                                                                                                                              
Helmberger, M. S., Tiemann, L. K., Grieshop, M. J (2020) Towards an ecology of soil microplastics. Functional Ecology, 34: 550-560.
Hoda, P. S (2010) Trace elements in soils. 1rd ed, Blackwell Publishing Ltd, 579 p.
Hong, S. H., Shim, W. J., Hong, L (2017) Methods of analyzing chemicals associated with microplastics: a review. Analytical Methods, 9: 1361-1368.      
Hu, C., Lu, B., Guo, W. S., Tang, X. Y., Wang, X. F., Xue, Y. H (2021) Distribution of microplastics in mulched soil in Xinjiang, China. International Journal of Agricultural and Biological Engineering, 14(2): 196-204.
Isobe, A., Iwasaki, S. H., Uchiada, K., Tokai, T (2019) Abundance of non-conservative microplastics in the upper ocean from 1957 to 2066.  Nature Communications, 10 (1): 1-13.                                                               
Kabata-Pendias, A., Mukherjee, A. B (2007) Trace elements from soil to human. Springer-Verlag Berlin Heidelberg., 561p.                                                                                                                                                       
Kabata-Pendias (2011) Trace elements in soils and plants. 4th ed. CRC   Press. Boca Raton., 413p.                                                                                                                                                                             
Kirpichtchikova, T. A., Manceau, A., Spadini, L., Panfili, F., Marcus, M. A., Jacquet, T (2006) Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS Spectroscopy, Chemical extraction, and thermodynamic modeling. Geochimica et Cosmochimica Acta, 70 (9):  2163-2190.                            
Kole, P. J., Lohr, A. J., Van Belleghem, F., Ragas, A (2017) Wear and tear of tyres: a stealthy source of microplastics in the environment. International Journal of Environment Research and Public Health, 14 (10): 1265.                                                                                                                                                                                
Levinson, A. A (1974) Introduction to Exploration Geochemistry. Applied Publication Limited, Calgary, 1965p.
Li, Z., Ma, Z., Kuijp, T. J., Yuan, Z., Huang, L (2014) A review of soils heavy metal pollution form mines in china: pollution and health risk assessment. Science of the Total Environment, 468-469: 843-53. doi: 10.1016/j.scitotenv.2013.08.090.                                                                                                                                   
Mahon, A. M., O’Connell, B., Healy, M. G., O’Connor, I., Officer, R., Nash, R., Morrison, L (2017) Microplastics in sewage sludge: effects of treatment. Environmental Science and Technology, 51 (2): 810-818.                               
Manrique, L. A., Jones, C. A., Dyke. P. T (1991) Predicting Cation-Exchange Capacity from Soil Physical and Chemical Properties. Soil Science Society America Journal, 55(3): 787- 794.                                                                       
Mason, S. A., Garneau, D., Sutton, R., Chu, Y., Ehmann, K., Barnes, J., Fink, P., Papazissimos, D., Rogers, D. L (2016) Microplastic pollution is widely detected in us municipal wastewater treatment plant effluent. Environmental Pollution, 218: 1045-1054.                                                                                                                     
McBride, M. B (2003) Toxic metals in sewage sludge-amended soils: Has promotion of beneficial use discounted the risks?. Advaces in Environmental Research, 8(1): 5-19.                                                                                           
Ming-Ho, Y (2005) Environmental Toxicology: Biological and Health Effects of Pollutants, Chap. 12, CRC Press LLC, ISBN 1-56670-670-2, 2nd Edition, BocaRaton, USA.                                                                                       
Mintenig, S. M., Int-Veen, I., Loder, M. G. J., Primpke, S., Gerdts, G (2017) Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Research, 108: 365-372.
Muller, G (1969) Index of geoaccumulation Mullein sediments of the Rhine river. Geology, 2: 108-118.                
Novozamsky, I., Lexmond, T. M., and Houba, V. J. G (1993) A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants. International Journal of Environmental Analytical Chemistry, 51(1-4): 47-58.                                                                               
Nriagu, J. O (1978) The biogeochemistry of lead (pp. 18–88). Amsterdam: Elsevier.                                                  
Pinon-Colin, T. D. J., Rodriguez-Jimenez, R., Pastrana-Corral, M. A., Rogel-Hernandez, E., Wakida, F. T (2018) Microplastics on sandy beaches of the Baja California Peninsula, Mexico. Marine Pollution Bulletin, 131: 63-71.
Prata, J. C (2018) Airborne microplastics: Consequences to human health? Environmental Pollution, 234: 115-126.
Qi, R., Jones, D. L., Li, Z., Liu, Q., Yan, C (2020) Behavior of microplastics and plastic film residues in the soil environment: a critical review. Science of the Total Environment, 703: 134722.                                                        
Reimann, C., Matschullat, J., Birke, M., & Salminen, R (2009) Arsenic distribution in the environment: The effects of scale. Applied Geochemistry, 24(7): 1147–1167.                                                                                           
Ritchie, G. S. P., & Sposito, G (1995) Speciation in soils. In A. M. Ure & C. M. Davidson (Eds.), Chemical speciation in the environment (pp. 234–275). London: Blackie Academic & Professional.                                      
Ryan, P. G., Moore, C. J., Van Franeker, J. A., Moleney, C. L (2009) Monitoring the Abundance of plastic debris in the marine environment.  Philosophical Transaction of the Royal Society B: Biological Sciences 364, doi.org/10.1098/rstb.2008.0207.                                                                                                                                        
  Rillig, M. C., Ziersch, L., Hempel, S (2017) Microplastic transport in soil by earthworms. Scientific Reports, 7(1362).                                                                                                                                                  
 Steinmetz, Z., Wollmann, C., Schaefer, M., Schaefer, M., Buchmann, C., David, Troger, J., Munoz, K., Foro, O., Schaumann, G. E (2016) Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?. Science of the Total Environment, 550: 690-705                                                                               
Sungur, A., Soylak, M., Yilmaz, E., Yilmaz, S., and Ozcan, H (2015) Characterization of heavy metal fractions in agricultural soils by sequential extraction procedure: the relationship between soil properties and heavy metal fractions. Soil and Sediment Contamination: An International Journal, 24(1): 1-15.                                              
Sutherland, R. A (2000) Bed sediment-associated trace metals in an urban staream, Oahu, Hawaii. Environmental Geology, 39: 611-627                                                                                                                                                 
Ure, A. M., Berrow, M. L (1982) The elemental constituents of soils; in H. J. M. Bowen. Environmental Chemistry, 2: 194-204.                                                                                                                                                                      
Underwood, E. J. and Suttle, N. F (1999) The Mineral Nutrition of Livestock. 3rd Edition, CABI Publishing, Wallingford, Oxon, 283-292.                                                                                                                                       
USEPA (1989) The importance of enrichment factor (EF) and geoaccumulation indexes (Igeo) to evalvate the soil contamination, Journal of Geology sics, 5 (237): 237-245.                                                                                            
USEPA (1998) Test Methods for Evaluating Solid Waste, Method 9045D EPA, Washington, D.  
USEPA (1998) Test Methods for Evaluating Solid Waste, Method 9081A. EPA, Washington, D.                        
Walkley, A. Black, I. A (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1): 29-38.                                                                                                                                                                                                                 
Weithmann, N. Moller, J. N., Loder, M. G. J., Piehl, S., Laforsch, C., Freitag, R (2018) Organic fertilizer as a vehicle for the entry of microplastic into the environment. Science Advances, 4(4).
Yan, Y. Y., Zhu, F. X., Zhu, C. Y., Chen, Z. H., Liu, S. C., Wang, C., Gu, C (2021) Dibutyl phthalate release from polyvinyl chloride microplastics: influence of plastic properties and environmental factors. Water Research, 204: 117597.
Yuan, W., Liu, X., Wang, W (2019) Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China. Ecotoxicology and Environmental Safety, 170: 180–187.