ریزساختارهای دگرشکلی در لویکوگرانیت میلونیتی غرب یزد

نویسندگان

1 استادیار گروه زمین‌شناسی، دانشکده علوم‌پایه‌، دانشگاه یزد، یزد، ایران

2 دانش‌آموخته دکترا پترولوژی، دانشکده علوم‌زمین‌ و منابع طبیعی، دانشگاه شهرکرد، شهرکرد، ایران

3 دانشیار گروه زمین‌شناسی، دانشکده علوم‌زمین‌ و منابع طبیعی، دانشگاه شهرکرد، شهرکرد، ایران

چکیده

توده لویکوگرانیت‌ میلونیتی در غرب یزد و در حاشیه گرانیت شیرکوه رخنمون دارد. منطقه مورد مطالعه از نظر تقسیم‌بندی زمین‌ساختاری ایران در بلوک یزد، ایران مرکزی قرار گرفته است. بر اساس مطالعات پتروگرافی کانی‌شناسی عمده این سنگ‌ها شامل کوارتز، آلکالی فلدسپار و پلاژیوکلاز می‌‌باشد. کانی‌های مسکویت همراه با بیوتیت، تورمالین، روتیل، آلانیت، زیرکن، تیتانیت، اپیدوت نیز به‌مقدار کم‌تر در برخی نمونه‌ها وجود دارند. آثار دگرشکلی و متاسوماتیسم در این سنگ‌ها به‌صورت تبلور مجدد همراه با مهاجرت مرز دانه، ریزساختارهای مهاجرت مرز دانه‌، خاموشی موجی، ماکل‌های دگرشکلی، خمش و چین‌خوردگی در میکا، همرشدی بلورها (مانند بافت گرافیکی)، مسکویتی‌شدن هم‌جهت بیوتیت و آلبیتی‌شدن هم‌جهت، بافت پرتیتی و میلونیتی مشاهده می‌‌شوند. با توجه به شواهد بیان شده، لویکوگرانیت‌های میلونیتی مورد مطالعه در گستره دمایی 2۵۰ تا 700 درجه سانتی‌گراد تحت تأثیر حوادث پس از ماگماتیسم مانند رخدادهای دگرشکلی و دگرگونی قرار گرفته‌اند و در طی این رخدادها با حضور سیال دچار دگرسانی و متاسوماتیسم نیز شده‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Deformation microstructures in mylonitic leucogranite in the west of Yazd

نویسندگان [English]

  • M. Khodami 1
  • M. Bendokht 2
  • N. Shabanian 3
1 Assist. Prof., Dept., of Geology, Faculty of science, Yazd University, Yazd, Iran
2 Ph. D. (graduated), Faculty of natural resources and earth sciences, Shahrekord University, Sharekord, Iran
3 Assoc. Prof., Dept., of Geology, Faculty of natural resources and earth sciences, Shahrekord University, Sharekord, Iran
چکیده [English]

The mylonitic leucogranite is exposed in the west of Yazd on the edge of Shirkoh granite. Based on the structural division of Iran, the region is situated in the Yazd block, Central Iran. The petrographical studiese show the rocks mostly contain quartz, alkali feldspar, and plagioclase. Occasionally, muscovite with biotite, tourmaline, rutile, allanite, zircon, titanite, and epidote are seen in some samples. Deformation and metasomatism evidence are observed as recrystallization along with grain boundary migration, microstructures of grain boundary migration, undulose extinction, deformation twinning, folding and bending in mica, intergrowth of crystals (such as graphic texture), co-oriented muscovitization of biotite and co-oriented albitization, perthitic and mylonitic texture in the rocks. According to mentioned evidence, leucogranites have been affected by post-magmatism events such as metamorphism, deformation, and in the temperature range of 250 ° to 700 °C and during these events, they have undergone alteration and metasomatism with the presence of fluids.

کلیدواژه‌ها [English]

  • Leucogranites
  • Mylonite
  • Metasomatism
  • Dynamic deformation
  • Yazd block
Ahmadipour, H., Rostamizadeh, G (2012) Geochemical aspects of Na-metasomatism in Sargaz granitic intrusion (south of Kerman province, Iran), Journal of Sciences Islamic Republic of Iran, 23: 45-58
Alavi, M (2004) Regional stratigraphy of the Zagros Fold-Thrust Belt of Iran and its proforeland evolution, American Juornal of Science. 304: 1–120.
Alavi Naeeni, M., Hajmolaali, A (1993) The geological map of Khezrabad, 1:100000", Geological society of Iran.
Bagheri, S., Stampfli, G. M (2008) The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: new geological data, relationships and tectonic implications", Tectonophysics, 451: 123-155.
Barker, A. J (2013) Introduction to metamorphic textures and microstructures, Routledge.
Barker, D. S (1970) Compositions of granophyre, myrmekite, and graphic granite, Geological Society of America Bulletin, 81: 3339-3350.
Bell, I. A., Wilson, C. J. L., McLaren, A. C., Etheridge, M. A (1986b) Kinks in mica: role of dislocations and (001) cleavage, Tectonophysics, 127: 49-65.
Berberian, M, King G. C. P (1981) Towards a paleogeography and tectonic evolution of Iran, ‎Canadian Journal of Earth Science, 18: 210–265. ‎
Best, M. G., Christiansen E. H (2001) Igneous petrology", Blackwell Science.
Blenkinsop, T (2002) Deformation microstructures and mechanisms in minerals and rocks, Kluwer Academic Publishers, 146 p.
Cao, D., Cheng, H., Zhang, L., Wang, K (2018) Origin of atoll garnets in ultra-high-pressure eclogites and implications for infiltration of external fluids", Journal of Asian Earth Sciences, 160: 224-238.
Cathelineau, M (1986) The hydrothermal alkali metasomatism effects on granitic rocks: quartz dissolution and related subsolidus changes", Journal of Petrology, 27: 945-965.
Ceccato, A., Menegon, L., Pennacchioni, G., Morales, L. F. G (2018) Myrmekite and strain weakening in granitoid mylonites, Solid Earth Discussion, doi.org/10.5194/se-2018-70.
Cheng, H., Nakamura, E., Kobayashi, K., Zhou, Z (2007) Origin of atoll garnets in eclogites and implications for the redistribution of trace elements during slab exhumation in a continental subduction zone, American Mineralogist, 92: 1119-1129.
Davoudian, A. R., Genser, J., Neubauer, F., Shabanian, N (2016) 40Ar/39Ar mineral ages of eclogites from North Shahrekord in the Sanandaj–Sirjan Zone, Iran: Implications for the tectonic evolution of Zagros orogeny, Gondwana Research, 37: 216–240.
Faryad, S. W., Klápová, H., Nosál, L (2010) Mechanism of formation of atoll garnet during high-pressure metamorphism, Mineralogical Magazine, 74: 111-126.
Fazio, E., Fiannacca, P., Russo, D., Cirrincione, R (2020) Submagmatic to Solid-State Deformation Microstructures Recorded in Cooling Granitoids during Exhumation of  Late-Variscan Crust in North-Eastern Sicily, Geosciences, 10: 311.
Fitzgerald, J. G., McLaren, A. C (1982) The microstructures of microcline from some granitic rocks and pegmatites, Contribution to Mineralogy and Petrology, 80: 219–229.
Galán, G., Marcos, A (2000) The metamorphic evolution of the high pressure mafic granulites of the Bacariza Formation (Cabo Ortegal Complex, Hercynian belt, NW Spain), Lithos, 54: 139-171.
Gieré, R., Sorensen, S. S., (2004) Allanite and other REE-rich epidote-group minerals, Reviews in mineralogy and geochemistry, 56 (1): 431-493.
Guo, H., Xiao, Y., Xu, L., Sun, H., Huang, J., Hou, Z (2017) Origin of allanite in gneiss and granite in the Dabie orogenic belt, Central East China, Journal of Asian Earth Sciences, 135: 243-256.
Hibbard, M. J (1987) Deformation of incompletely crystallized magma systems: granitic gneisses and their tectonic implications. The Journal of Geology, 95: 543-561.
Hajialioghli, R., Shekari, R (2016) Petrography and microtextural investigations of the deformed Siyahmansur granitoids from NE Miyaneh-East Azerbaijan province, New Findings in Applied Geology, 10 (20): 23-34. doi: 10.22084/nfag.2017.1690, In persian.
Holness, M. B., Clemens, J. D., Vernon, R. H (2018) How deceptive are microstructures in granitic rocks? Answers from integrated physical theory, phase equilibrium, and direct observations, Contributions to Mineralogy and Petrology, 173: 62. doi.org/10.1007/s00410-018-1488-8.
Jessell, M. W (1987) Grain-boundary migration microstructures in a naturally deformed quartzite, Journal of Structural Geology, 9: 1007-1014.
Khodami, M (2019) Pb isotope geochemistry of the late Miocene–Pliocene volcanic rocks from Todeshk, the central part of the Urumieh–Dokhtar magmatic arc, Iran: Evidence of an enriched mantle source, Journal of Earth System Science, 128: 167.
Khodami, M., Shabanian, N., Nouri, F., Asahara, Y., Davoudian, A. R (2022) A record of Late Cambrian–Early ‎Ordovician arc magmatism in Yazd block, Central Iran, Arabian Journal of Geosciences, 15: 876.‎
 Kordi, A., Ardalan, A. A., Sheikhzakariayi, S. J., Ashrafi, N (2020) A typology of textures in south Naghadeh intrusive rocks, northwestern Iran", Revista Geoaraguaia, 10: 6-79.
Lange, I., Toro, M., Arvidson, R. S., Kurganskaya, I., Luttge, A (2021) The role of crystal heterogeneity in alkali feldspar dissolution kinetics, Geochimica et Cosmochimica Acta, 309: 329-351.
 Lister, G. S., Snoke A. W (1984) SC mylonites, Journal of Structural Geology, 6: 617-638.
Lychagin, D. V., Kungulova, E. N., Moskvichev, E. N., Tomilenko, A. A., Tishin, P. A (2020) Microstructure of Vein Quartz Aggregates as an Indicator of Their Deformation History: An Example of Vein Systems from Western Transbaikalia, Russia, Minerals, 10: 865.
Nouri, F., Davoudian, A. R., Allen, M. B., Azizi, H., Asahara, Y., Anma, R., Shabanian, N., Tsuboi, M., Khodami, M (2021) Early Cambrian highly fractionated granite, Central Iran: Evidence for drifting of northern Gondwana and the evolution of the Proto-Tethys Ocean, Precambrian Research, 362: 106291.
Nouri, F., Davoudian, A. R., Shabanian, N., Allen, M. B., Asahara, Y., Azizi, H., Anma, R., Khodami, M., Tsuboi, M (2022) Tectonic transition from Ediacaran continental arc to early Cambrian rift in the NE Ardakan region, central Iran: Constraints from geochronology and geochemistry of magmatic rocks, Journal of Asian Earth Sciences, 224: 105011.
Broska, I (2003) REE accessory minerals in the felsic silicic rocks of the west-carpathians: their distribution, composition and stability. Acta Mineralogica-Petrographica, abstract, 15.‏
Owona, S., Ondoa, J. M., Ekodeck, G. E (2013) Evidence of quartz, feldspar and amphibole crystal plastic deformations in the paleoproterozoic Nyong Complex Shear Zones under Amphibolite to Granulite conditions (west Central African Fold Belt, SW Cameroon)", Journal of Geography and Geology, 5: 186.
Passchier, C. W., Trouw, R. A (2005) Microtectonics, Springer Science & Business Media.
Petrík, I., & Broska, I (1994). Petrology of two granite types from the Tribeč Mountains, Western Carpathians: an example of allanite (+ magnetite) versus monazite dichotomy. Geological Journal, 29: 59-78.‏
Plümper, O., Putnis, A (2009) The complex hydrothermal history of granitic rocks: multiple feldspar replacement reactions under subsolidus conditions, Journal of Petrology, 50: 67-987.
Pryer, L. L., Robin, P. Y (1995) Retrograde metamorphic reactions in deforming granites and the origin of flame perthite, Journal of Metamorphic Geology, 13: 45-658.
Putnis, A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms, Mineralogical Magazine, 66: 689-708.
Putnis, A., Hinrichs, R., Putnis, C. V., Golla-Schindler, U., Collins, L. G (2007) Hematite in porous, red-clouded feldspars: evidence of large-scale crustal fluid–rock interaction, Lithos, 95: 10-18.
Ramezani, J., Tucker, R. D (2003) The Saghand region, central Iran: U‐Pb geochronology, petrogenesis and implications for Gondwana tectonics, American Journal of Science, 303: 622–665.
Rong, J., Wang, F (2016) Metasomatic Textures in Granite, Springer. Mineral, 22: 143-144.
Samaddar, A., Bera, T., Nag D., Bhowmik, D (2020) Fun Texture in Feldspar, JDC GeoBytes, 66.
Sepahi, A., Khaksar, T., Izadi Kian, L (2016) A study of microstructures of granitoids from the Alvand plutonic complex, Sanandaj-Sirjan zone, Iran: with special reference to myrmekite development, New Findings in Applied Geology, 10 (20): 164-175. doi: 10.22084/nfag.2016.1704 (In Persian).
Shabanian, N., Davoudian, A. R., Dong, Y. P., Liu X (2018) MU-Pb zircon dating, geochemistry and Sr-Nd-Pb isotopic ratios from Azna-Dorud Cadomian metagranites, Sanandaj-Sirjan Zone of western Iran, Precambrian Research, 306: 41-60.
Sheibi, M., Esmaeily, D., Luc, Bouchez, J (2013) Emplacement Mechanism of Shir-Kuh Granitoid Batholith with Using AMS Method, Scientific Quarterly Journal of Geosciences, 22: 113-122.
Shelley, D (1993) Igneous and metamorphic rocks under the microscope: classification, textures, microstructures and mineral preferred orientations, London: Chapman & Hall, 445 p.
Smith, J. V (2012) Feldspar minerals: 2 chemical and textural properties, Springer Science & Business Media, 692 p.
Spiess, R., Peruzzo, L., Prior, D. J., Wheeler, J (2001) Development of garnet porphyroblasts by multiple nucleation, coalescence and boundary misorientation‐driven rotations, Journal of Metamorphic Geology, 19: 269-290.
Stampfli, G. M., Borel, G. D (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored syntheticoceanic isochrons, Earth and Planetary Science Letter, 196: 17-33.
Stipp, M., StuÈnitz, H., Heilbronner, R., Schmid, S. M (2002) The eastern Tonale fault zone: a ‘natural laboratory’for crystal plastic deformation of quartz over a temperature range from 250 to 700 C, Journal of structural geology, 24: 1861-1884.
Tarabi, S., Emami, M. H., Modabberi, S., Sheikh-Zakariaee, S. J (2019) Eocene-Oligocene volcanic units of momen abad, east of Iran: petrogenesis and magmatic evolution, Iranian Journal of Earth Sciences, 11: 126-140.
Torkian, A. Izadi Kian, L., Rezaei, M (2014) Petrography and tectonic setting of the mylonitic granitoids, SE-Qorveh (Kurdistan), New Findings in Applied Geology, 8(15): 32-42. (In Persian).
Vernon, R. H (2018) A practical guide to rock microstructur", Cambridge university press London, 624 p.
Yazdi, A., Ashja-Ardalan, A., Emami, M. H., Dabiri, R., Foudazi, M (2017) Chemistry of Minerals and Geothermobarometry of Volcanic Rocks in the Region Located in Southeast of Bam, Kerman Province, Open Journal of Geology, (11): 1644.
Yuguchi, T., Nishiyama, T (2008) The mechanism of myrmekite formation deduced from steady-diffusion modeling based on petrography: Case study of the Okueyama granitic body, Kyushu, Japan, Lithos, 106: 237-260.