مطالعه نسل های چندگانه الیوین در متاپریدوتیت های منطقه شصت پیچ با استفاده از ریزکاوالکترونی و طیف سنجی رامان

نویسندگان

1 استادیار گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه شهید باهنرکرمان، کرمان، ایران

2 استاد گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه شهید باهنرکرمان، کرمان، ایران

3 استادیار گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه ولایت، ایرانشهر، ایران

چکیده

منطقه شصت­پیچ میزبان مجموعه­ای افیولیتی است که در جنوب­غرب کرمان، جنوب­شرقی ایران، واقع شده است. این مجموعه افیولیتی از سنگ­های فوق­بازی لرزولیت، هارزبورژیت و دونیت تشکیل شده است. الیوین از جمله کانی­های مهم موجود در این سنگ­ها می­باشد که به همراه پیروکسن (اورتوپیروکسن و کلینوپیروکسن) و اسپینل در سنگ­های منطقه مشاهده می­شود. طیف ترکیبی الیوین­های منطقه، در محدوده فورستریت 84 تا 92 درصد قرار می­­گیرد و از نوع فورستریت تا کریزولیت است. NiO با مقدار متوسط در حدود 38/0 درصد وزنی و MnO با میانگین 14/0 درصد وزنی در الیوین­ها محدوده مربوط به پریدوتیت­های آبیسال را نشان می­دهند. علاوه بر سرپانتینی­شدن به عنوان یک دگرشکلی عمومی در اولترامافیک­های منطقه، در مطالعات پتروگرافی شواهدی از دگرگونی در الیوین­های برخی هارزبورژیت­ها به همراه بلورهای تبلور مجددیافته آنتی­گوریتی دیده می­شود که نشانگر یک فاز دگرگونی حرارتی در این هارزبورژیت­ها است. این نتایج در مطالعات شیمی کانی نیز تایید گردیده است، به گونه­ای که الیوین­های دگرگونی با کاهیدگی در کلسیم دچار یک ناهنجاری نسبت به الیوین­های ماگمایی هستند. در مطالعات شیمی کانی مقادیر فورستریت الیوین­ها، از لرزولیت به سمت هارزبورژیت و دونیت افزایش منظمی را نشان می­دهد. مطالعات طیف­سنجی رامان بر روی الیوین­های مورد مطالعه ارتباط شیفت پیک 854 موج بر سانتی­متر با مقادیر فورستریت کانی­های الیوین منطقه را به خوبی نشان می­دهد.

کلیدواژه‌ها


عنوان مقاله [English]

The study of multiple generations of olivine in metaperidotites of the Shasatpich using EMPA and Raman spectroscopy

نویسندگان [English]

  • B. Bahrambeygi 1
  • H. Moeinzadeh 2
  • S. Sedighiyan 3
1 Assist. Prof., Dept., of Geology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
2 Prof., Dept., of Geology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
3 Assist. Prof., Dept., of Geology, Faculty of Sciences, Velayat University, Iranshahr, Iran
چکیده [English]

The Shasatpich area hosts an ophiolitic complex located in the south of Kerman, southeast Iran. This ophiolitic complex is composed of lherzolite, harzburgite, and dunite. Olivine is one of the important minerals found in these rocks, which is observed along with pyroxene (orthopyroxene and clinopyroxene) and spinel. The combined range of olivines is forsterite to chrysolite, range of 84 to 92%. NiO with an average amount of about 0.38 wt% and MnO with an average of 0.14 wt% in olivines show the range has related to abyssal peridotites. In addition to serpentinization as a general alteration in the ultramafic rocks, petrographic studies show that evidence of metamorphism in the olivines of some harzburgites along with recrystallized antigorite crystals, which indicate a phase of thermal metamorphism in this harzburgite. These results have been confirmed in mineral chemistry studies too. Metamorphic olivines have an abnormality compared to magmatic olivines with a decrease in CaO. In chemical mineralogical studies, the amounts of forsterite and olivines show a regular increase from lherzolite to harzburgite and dunite. Raman spectroscopy studies on the studied olivines show the relationship between the peak shift of 854 waves/cm and forsterite values ​​of olivine minerals in the study area.

کلیدواژه‌ها [English]

  • Peridotite
  • Olivine
  • Mineral Chemistry
  • Raman Spectroscopy
  • Shasatpich
  • Kerman
Alipour, R., Moeinzadeh, H., Perineeli, C., Bosi, F., Ahmadipour, H (2021) Mineralogical and petrogenetic characteristics of the peridotites and associated podiform chromitites from Abgarm ultramafic complex (south-eastern Iran). Periodico di Mineralogia, 90: 341-357.
Arfania, R (2018) Role of supra-subduction zone ophiolites in the tectonic evolution of the southeastern Zagros Orogenic Belt, Iran. Iranian Journal of Earth Sciences, 10(1): 31-38.
Arai, S., and Yurimoto, H (1994) Podiform chromitites of the Tari-Misaka ultramafic complex, southwestern Japan, as mantle-melt interaction products. Economic Geology, 89(6): 1279-1288.
Arai, S (1994a) Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chemical Geology, 113(3-4): 191-204.
Arai, S (1994b) Compositional variation of olivine-chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites. Journal of Volcanology and Geothermal Research, 59(4): 279–293.
Arai, S., Okamura, H., Kadoshima, K., Tanaka, C., Suzuki, K., Ishimaru, S (2011) Chemical characteristics of chromian spinel in plutonic rocks: implications for deep magma processes and discrimination of tectonic setting. Island Arc, 20(1): 125-137.
Azizi, H., and Stern, R. J (2019) Jurassic igneous rocks of the central Sanandaj–Sirjan zone (Iran) mark a propagating continental rift, not a magmatic arc. Terra Nova, 31(5): 415-423.
Bahrambeygi, B., Moeinzadeh, H., Alavipanah, S. K (2019) Mineralogy, geochemistry and Raman Spectroscopy of multi-genesis serpentine polymorphs of Darepahn Ophiolites. Journal of Sciences, Islamic Republic of Iran, 30(3): 251-269.
Beattie, P (1993) Olivine-melt and orthopyroxene-melt equilibria. Contributions to Mineralogy and Petrology, 115(1): 103-111.
Brey, G., and Köhler, T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology, 31(6): 1353-1378.
Clarke, E., de Hoog, J. C. M., Kirstein, L. A., Harvey, J., Debret, B (2020) Metamorphic olivine records external fluid infiltration during serpentinite dehydration. Geochemical Perspectives Letters, 16: 25-29.
Coleman, R (1977) Emplacement and metamorphism of ophiolites. Ofioliti, 2(1): 41-73.
Dandar, O., Okamoto, A., Uno, M., Oyanagi, R., Nagaya, T., Burenjargal, U., Miyamoto, T., Tsuchiya, N (2019) Formation of secondary olivine after orthopyroxene during hydration of mantle wedge: evidence from the Khantaishir Ophiolite, western Mongolia. Contributions to Mineralogy and Petrology, 174(11): 1-22.
De Hoog, J. C. M., Gall, L., Cornell, D (2010) Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chemical Geology, 270(1-4): 196-215.
Dilek, Y., and Furnes, H (2014) Ophiolites and their origins. Elements, 10(2): 93-100.
Ghasemi, H., and Derakhshi, M (2008) Mineralogy, geochemistry and role of olivine mechanical separation in generation of Lower Paleozoic igneous rocks in Shirgesht area, NW of Tabas, Central Iran. Iranian Journal of Crystallography and Mineralogy, 16: 227-224.
Ghazi, S. and Mountney, N. P (2011) Petrography and provenance of the Early Permian Fluvial Warchha Sandstone, Salt Range, Pakistan. Sedimentary Geology, 233(1-4): 88-110.
Hassanzadeh, J., and Wernicke, B. P (2016) The Neotethyan Sanandaj‐Sirjan zone of Iran as an archetype for passive margin‐arc transitions. Tectonics, 35(3): 586-621.
Hellebrand, E., Snow, J. E., Mühe, R (2002) Mantle melting beneath Gakkel Ridge (Arctic Ocean): abyssal peridotite spinel compositions. Chemical Geology, 182(2-4): 227-235.
Herzberg, C., and Asimow, P. D (2008) Petrology of some oceanic island basalts: PRIMELT2. XLS software for primary magma calculation. Geochemistry, Geophysics, Geosystems, 9(9): 1-25.
Hirose, K., and Kawamoto, T (1995) Hydrous partial melting of lherzolite at 1GPa: the effect of H2O on the genesis of basaltic magmas. Earth and Planetary Science Letters, 133: 463-473.
Howie, R., Zussman, J., Deer, W (1992) An introduction to the rock-forming minerals, Longman London, UK.
Jackson, E (1969) Chemical variation in coexisting chromite and olivine in chromitite zones of the Stillwater Complex, Montana. In Magmatic Ore Deposits. Economic Geology Monograph, 4: 41-71.
Lian, D., Yang, J., Robinson, P. T., Liu, F., Xiong, F., Zhang, L., Gao, J., Wu, W (2016) Tectonic evolution of the western Yarlung Zangbo Ophiolitic Belt, Tibet: Implications from the petrology, mineralogy, and geochemistry of the peridotites. The Journal of Geology, 124(3): 353-376.
McCall, G (1997) The geotectonic history of the Makran and adjacent areas of southern Iran. Journal of Asian Earth Sciences, 15(6): 517-531.
Moghadam, H. S. and Stern, R. J (2015) Ophiolites of Iran: Keys to understanding the tectonic evolution of SW Asia:(II) Mesozoic ophiolites. Journal of Asian Earth Sciences, 100: 31-59.
Mohammadi, M., Ahmadipour, H., Moradian, A (2018) Origin of Lherzolitic Peridotites in Ab-Bid Ultramafic Complex (Hormozgan Province); Products of Mantle Metasomatism or Partial Melting Processes?. Journal of Sciences, Islamic Republic of Iran, 29(1): 53-65.
Nagaya, T., Wallis, S. R., Kobayashi, H., Michibayashi, K., Mizukami, T., Seto, Y., Matsumoto, M (2014) Dehydration breakdown of antigorite and the formation of  B-type olivine CPO. Earth and Planetary Science Letters, 387: 67-76.
Nicolas, A (2012) Structures of ophiolites and dynamics of oceanic lithosphere. Petrology and structural geology: Amsterdam, Kluwer Academic Publishers, 367 p.
Olfindo, V. S. V., Payot, B. D., Valera, G. Th. V., Arai, Sh (2020) Petrogenesis of heterogeneous mantle peridotites with Ni-rich olivine from the Pujada Ophiolite, Philippines. Journal of Asian Earth Sciences, X 4: 100039.
Roeder, P., and Emslie, R (1970) Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology, 29(4): 275-289.
Scambelluri, M., Muntener, O., Ottolini, L., Pettke, T. T., Vannucci, R (2004) The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. Earth and Planetary Science Letters, 222(1): 217-234.
Seyler, M., Lorand, J. P., Dick, H. J. B., Drouin, M (2007) Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15-20◦N: ODP Hole 1274. Contributions to Mineralogy and Petrology, 153(3): 303-319.
Shafaii Moghadam, H., Stern, R. J., Rahgoshay, M (2010) The Dehshir ophiolite (Central Iran): geochemical constraints on the origin and evolution of the Inner Zagros Ophiolitic Belt. Geological Society of America Bulletin, 122: 1516-47.
Shafaii Moghadam, H., Stern, R. J., Chiaradia, M (2013) Geochemistry and petrogenesis of the Late Cretaceous Haji‐Abad ophiolite (Outer Zagros Ophiolite Belt, Iran): implications for geodynamics of the Bitlis–Zagros suture zone. Geological Journal, 48(6): 579-602.
Shafaii Moghadam, H., Stern, R. J., Chiaradia, M (2013) Geochemistry and tectonic evolution of the Late Cretaceous Gogher-Baft ophiolite, central Iran. Lithos, 168-169: 33-47.
Shirdashtzadeh, N., Torabi, G., Meisel, T., Arai, S., Bokhari, S. N. H., Samadi, R., Gazel, E (2014a.) Origin and evolution of metamorphosed mantle peridotites of Darreh Deh (Nain Ophiolite, Central Iran): Implications for the Eastern Neo-Tethys evolution. Neues Jahrbuch für Geologie und Paläontologie– Abhandlungen, 273(1): 89-120.
Shirdashtzadeh, N., Torabi, G., Samadi, R (2014b) Geochemistry of pillow lavas and their clinopyroxene: ophiolitic mélanges of Nain and Ashin (Northeast of Isfahan Province). Journal of Economic Geology, 6(1): 49-70.
Shirdashtzadeh, N (2020) Evolution of lithospheric mantle in the north of Nain‐Baft oceanic crust (Neo‐Tethyan ophiolite of Ashin, Central Iran). Island Arc, 29 (1): e12342.
Stöcklin, J (1974) Possible ancient continental margins in Iran. The Geology of Continental Margins, Springer, 873-887 pp.
Stöcklin, J (1981) A brief report on geodynamics in Iran, in Zagros, Hindukush, Himalaya Geodynamic Evolution, edited by H. K. Gupta and F. M. Delany, pp. 70-74, AGU, Washington, D. C.
Su, B., Chen, Y., Mao, Q., Zhang, D., Jia, L., Guo, Sh (2019) Minor elements in olivine inspect the petrogenesis of orogenic peridotites. Lithos, 344: 207-216.
Takahashi, E (1986) Melting of a dry peridotite KLB‐1 up to 14 GPa: Implications on the origin of peridotitic upper mantle. Journal of Geophysical Research: Solid Earth, 91(B9): 9367-9382.
Tamura, A., Arai, S., Andel, E. S (2008) Petrology and geochemistry of peridotites from TODP site U1309 at Atlantis massif. MAR 30N: micro- and macro- scale melt penetrations into peridotites. Contribution Mineralogy and Petrology, 155(4): 491-509.
Torabi, G., Shirdashtzadeh, N., Arai, S., Koepke, J (2011) Paleozoic and Mesozoic ophiolites of Central Iran: amphibolites from Jandaq, Posht-e-Badam, Nain and Ashin ophiolites. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 262(2): 227-240.
Torabi, G., Arai, S., Koepke, J (2011) Metamorphosed mantle peridotites from Central Iran (Jandaq area, Isfahan Province). Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 261: 129-150.
Yao, Z., Qin, K., Wang, Q., Xue, Sh (2019) Weak B‐type olivine fabric induced by fast compaction of crystal mush in a crustal magma reservoir. Journal of Geophysical Research: Solid Earth, 124(4): 3530-3556.