فرایندهای دیاژنتیکی و توالی پاراژنتیکی سازند شهبازان (ائوسن میانی- بالایی) در شمال باختر پلدختر، حوضه لرستان

نویسندگان

1 استادیار گروه زمین‌شناسی، واحد خرم‌آباد، دانشگاه آزاد اسلامی، خرم‌آباد، ایران

2 دانشجوی دکترا رسوب‌شناسی و سنگ‌شناسی رسوبی، دانشگاه بوعلی‌سینا، همدان، ایران

چکیده

در این پژوهش فرآیندهای دیاژنزی و توالی­های پاراژنتیکی سازند شهبازان مطالعه شده است. این سازند به سن ائوسن میانی تا پسین در حوضه­ی رسوبی لرستان گسترش دارد. در این پهنه یک برش سطح­الارضی به ضخامت 62 متر در 10 کیلومتری شمال باختر شهرستان پلدختر انتخاب شده است. سازند شهبازان در منطقه مورد مطالعه به صورت هم­شیب روی سازند کشکان قرار گرفته و توسط کربنات­های سازند آسماری به صورت ناپیوستگی پیوسته­نما پوشیده شده است. سنگ­نگاری مقاطع نازک و مطالعات SEM 10 نمونه از دولومیت­ها صورت گرفته است. مطالعات پتروگرافی منجر به شناسایی چندین فرآیند دیاژنزی مانند میکرایتی شدن، نوریختی، سیمانی شدن، فشردگی، انحلال و جانشینی شد که در نهایت مدل دیاژنزی آن تعیین گردید. براساس شواهد پتروگرافی، توالی پاراژنتیکی نهشته­های سازند شهبازان در این برش در چهار محیط دریایی، تدفینی، بالاآمدگی و آب شیرین تفسیر شده است، و طی سه مرحله دیاژنزی اولیه (ائوژنز)، میانی (مزوژنز) و نهایی (تلوژنز) تعیین شده است. مهم­ترین فرآیند دیاژنزی در برش مورد مطالعه دولومیتی شدن می­باشد که هم به­صورت اولیه و هم به صورت ثانویه تشکیل شده است. آنالیز عنصری نمونه­ها به روش EDS و EPMA (با دقت یک صدم درصد) نشان داد که دولومیت­های اولیه دارای مقادیر پایین Fe و مقادیر بالایی از Sr و Na می­باشند، در حالی که دولومیت­های ثانویه دارای تمرکز بالایی از Fe و مقادیر کمتری Sr نسبت به دولومیت­های اولیه دارند که این موضوع دلالت بر محیط تدفینی دیاژنزی کم عمق تا متوسط برای دولومیت­های ثانویه می­باشد. مهم­ترین منبع تأمین کننده Mg در دولومیت­های اولیه آب دریا و در دولومیت­های ثانویه تبدیل کانی­های رسی به یکدیگر و آب­های دریایی محبوس می­باشد.  

کلیدواژه‌ها


عنوان مقاله [English]

Diagenetic processes and paragenetic sequence of Shahbazan Formation (Middle-Upper Eocene) in north west Poldokhtar, Lorestan basin

نویسندگان [English]

  • K. Mirbeik Sabzevari 1
  • M. Sedaghatnia 2
1 Assist. Prof., Dept. of Geology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
2 Ph. D. Student, Sedimentology and Sedimentary Rock, Bu Ali Sina University, Hamedan, Iran
چکیده [English]

In this study, Shahbazan Formation has been studied from the perspective of diagenetic processes and paragenetic sequences. This formation extends to the middle to late Eocene age in a large area of ​​Lorestan sedimentary basin. In this area, a 62-meter-thick surface section has been selected in 10 km. northwest of Poldokhtar city. Shahbazan Formation in the study area is located on the Kashkan detrital Formation and is covered by carbonates of Asmari Formation as a continuous discontinuity. Petrographic studies have been performed on thin sections and SEM studies have been performed on 10 samples of dolomites. Petrographic studies led to the identification of several diagenetic processes such as micritization, neomorphism, cementation, compaction, dissolution and replacement, which finally determined the diagenetic model. Based on the petrographic evidence, the paragenetic sequence of the Shahbazan Formation deposits in this section has been interpreted in four marine environments, freshwater, burial and uplift, and during three stages of diagenesis, namely primary diagenesis (Eogenesis), middle diagenesis (Mesogenesis) and late diagenesis (Telogenesis) has been determined. The most important diagenetic process in the studied section is dolomitization, which is formed both primary and secondary. Primary dolomites have low amounts of Fe and high amounts of Sr and Na, while secondary dolomites have high concentrations of Fe and lower amounts of Sr than primary dolomites, indicating a diagenetic burial environment. Shallow to medium for secondary dolomites.

کلیدواژه‌ها [English]

  • Shahbazan Formation
  • Diagenesis
  • Zagros
  • Lorestan
  • Poldokhtar
Abdi, A., Adabi, M. H (2009) Dolomites petrography diagenesis analysis, probable Shahbazan – Asmari formations boundary and facies based on dolomicrite geochemistry, petrographic evidences and statistical methods in Darabi section (Southwest Iran). Stratigraphy and Sedimentology Researches, 25 (1): 81-100. doi.org/20.1001.1.20087888.1388.25.1.6.8. (In Persian).
Abdolnia, A., Maghfouri Moghadam, I., Baghbani, D (2017) Stratigraphy of the Shahbazan Formation. Journal of Geosciences, 26 (103): 157-168. doi.org/10.22071/gsj.2017.46623. (In Persian).
Ahmad, A. H. M., and Bhat, G. M (2006) Petrofacies, provenance and diagensis of the Dhosa sandstone member (Chari Formation) at Ler, Kachch Sub – basin, Western, India, Journal of Asian Earth Science, 27: 857- 872. doi.org/10.1016/j.jseaes.2005.08.005.
Alavi, M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforland evolution, American Journal of Science, 304: 1–20. doi.org/10.2475/ajs.304.1.1.
Arosi, A. H., Wilson, M. E. J (2015) Diagenesis and fracturing of a large-scale, syntectonic carbonate platform, Sedimentary Geology, 326: 109–134.
Assadi, A., Honarmand, J., Moallemi, S. A., and Abdollahie-Fard, I (2016) Depositional environments and sequence stratigraphy of the Sarvak Formation in an oil field in the Abadan Plain, SW Iran. Facies, 62(4): 1-22. doi.org/10. 1007/s10347-016-0477-5.
Assadi, A., Rahimpour‐Bonab, H., and Kadkhodaie‐Ilkhchi, R (2018) Integrated rock typing of the grainstone facies in a sequence framework: a case from the Jurassic Arab formation in the Persian Gulf. Acta Geologica Sinica‐English Edition, 92(4): 1432-1450. doi.org/10.1111/1755-6724.13636.
Bahrami, F., Moussavi Harami, R., Khanehbad, M., Mahmudi Gharaie, M. H., Sadeghi, R (2014) Facies analysis, depositional environment and effective diagenesis processes on reservoir quality of the Asmari Formation in Ramin Oilfield. Journal of Applied Sedimentology, 2 (4): 16-36. (In Persian).
Bathurst, R. G. C (1975) Carbonate Sediments and their Diagensis: Developments in Sedimentalogy. 2nd Edication, Elsevier, Amesterdam, 12: 658 p.
Bathurst, R. G. C (1987) Diagenetically enhanced bedding in argillaceous platform limestone: stratified cementation and selective compaction, Sedimentology, 34(5): 749-778.
Beyranvand, M (2021) Biostratigraphy study of Shahbazan Formation in the Malekooh anticline (Northeast Poldakhtar, Varehzard area). Master thesis of Lorestan University. (In Persian).
Biernacka, J., Borysiuk, K., and Raczynski, P (2005) Zechstein (Ca1) limestone-marl alternations from the North-Sudetic Basin Poland, depositional or diagenetic rhythms? Geological Quarterly, 49: 1–14.
Borgomano, J., Lanteaume, C., Leonide, P., Fournier, F., Montaggioni, L. F., and Masse, J. P (2020) Quantitative carbonate sequence stratigraphy: Insights from stratigraphic forward models. AAPG Bulletin. 104(5): 1115-1142. doi.org/10.1306/11111917396.
Butler, I. B., Rickard, D (2000) Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogensulphide, Geochimica et Cosmochimica Acta, 64: 2665–2672. doi.org/10.1016/S0016-7037(00)00387-2.
Buxton, T. M., and Sibley, D. F (1981) Pressure solution features in a shallow buried limestone, Journal of Sedimentary Petrology, 51: 19–26.
Cantrell, D. L., and Hagerty, R. M (1999) Microporosity in Arab Formation Carbonates, Saudi Arabia: GeoArabia, 4: 129-154. doi.org/10.213/geoarabia0402129.
Choquette, P. W., and James, N. P (1990) Limestones: the burial diagenetic environment. In: Mcllreath, I.A., & Morrow, D.W. (eds.), Diagenesis. Geological Association of Canada, Geoscience Canada, Reprint Series, 4: 75-111. doi.org/10.1016/S0070-4571(08)71063-X.
Choquette, P. W., and Pray, L. C (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates: American Association of Petroleum Geologist Bulletin, 54: 207–244.
Cooke, M. L., Simo, J. A., underwood, C. A., and Rijken, P (2006) Mechanical Stratigraphic controls on fracture patterns within carbonates and implications for groundwater flow. Sedimentary Geol, 184: 225-239. doi.org/10.31223/X5W03M.
Dickson, J. A. D (1965) A modified staining technique for carbonate in the thin section: Nature, 205: 587. doi.org/10.1038/205587a0.
Earler, D. V., Nothdurft, L., McNeil, M., and Moras, C. A (2018) Tracing nitrate sources using the isotopic composition of skeletal-bound organic matter from the calcareous green algae Halimeda. Coral Reefs, 37: 1003– 1011. doi.org/10.1007/s00338-018-01742-z.
Ehrenberg, S. N., Pickard, N., Svana, A. H., and Oxtoby, T. A (2002) Cement geochemistry of photozoan carbonate strata (Upper Carboniferous-Lower Permian), Finnmark Carbonate Platform, Brents Sea. Journal Sedimentary Research, 72: 95-115. doi.org/10.1306/050701720095.
EL – G hali, M. A. K., Tajoti, K. G., ansorbeh, H. M., Ogle, N., & Kalin, R. M (2006) Origin and timing of sidrelite cementation upper Ordivisian glacogenic sandstone from the Murzuk basin, SW Libya. Marine and Petroleum Geology, 23: 459- 471.
El-Saiy, A. K., and Jordan, B. R (2007) Diagenetic aspects of tertiary carbonates west of the Northern Oman Mountains, United Arab Emirates: Journal of Asian Earth Sciences, 3: 35-43. doi.org/10.1016/j.jseaes.2007.03.004.
Farshi, M., Moussavi Harami, R., Mahboubi, A., Khanehbad, M (2017) Facies and diagenetic processes and it effect on distribution of petrophysical properties on reservoir quality of the Asmari Formation in Gachsaran Oilfield. Journal of Applied Sedimentology, 5 (9): 40-57. doi.org/10.22084/PSJ.2017.13230.1136. (In Persian).
Feyznia, S (1998) Carbonate Sedimentary Rocks. Emam Reza University, 304 p. (In Persian).
Flügel, E (2004) Microfacies of Carbonate Rocks: Analysis Interpretation and Application. Springer-Verlag, Berlin, 976p. sn.pub/extras.
Flügel, E (2010) Microfacies of Carbonate Rocks: Analysis Interpretation and Application. Springer-Verlag, Berlin, 976p. sn.pub/extras.
Folk, R. L (1965) Some aspects of recrystallization in ancient limestones. In: Pray, L.C. and Murray, R.C. (eds.): Dolomitization and limestone diagenesis. Society of Economic Paleontologist and Mineralogists. Spec. Publ., 13: 14-48. dx.doi.org/10.2110/pec.65.07.0014.
Folk, R. L., and Siedlecka, A (1974) The Schizohaline environment: its sedimentary and diagenesis fabrics as exemplified by late Paleozoic rocks of Bear Island, Svalbard, Journal of Sedimentary Geology, 11: 1-15. doi.org/10.1016/0037-0738(74)90002-5.
Garcia – pichel, F (2006) Plausible mechanisms for the boring on carbonates by microbial protorophs Sedimentary Geology, 125: 29-50. doi.org/10.1016/j.sedgeo.2005.12.013.
Geske, A., Zorlu, J., Richter, D. K., Buhl, D., Niedermayr, A., and Immenhauser, A (2012) Impact of diagenesis and low grade metamorphosis on isotope (δ26Mg, δ13C, δ18O and 87Sr/86Sr) and elemental (Ca, Mg, Mn, Fe and Sr) signatures of Triassic sabkha dolomites, Chemical Geology, 332-333: 45-64. doi.org/10.1016/j.chemgeo.2012.09.014.
Goldhaber, M. B (2004) Sulfur – rich sediment, In: Mackezie F. T., (ED.), Sediments, Diagenesis and Sedimentary Rocks, Treatise on Geochemistray. Elsevier, Amsterdam, PP. 257 – 288. doi.org/10.1016/B0-08-043751-6/07139-5.
Gregg, J. M., and Shelton, K. L (1990) Dolomitization and Dolomite Neomorphism in the Back Reef Facies of the Bonneterre and Davis Formations (Cambrian), Southeastern Missouri. Journal of Sedimentary Research., 60: 549-562.
Halley, R. B., and Harris, P. M (1979) Fresh water cementation of a 1, 000 year-old oolite. Jour. Sediment. Res., 49: 969–988.
Hassanzadeh Nemati, M., Mohseni, H., Memarian, M., Yousefi Yeganeh, B., Janbaz, M., Swennen, R (2018) Petrography and geochemical constrain of dolostones of the Shahbazan Formation in Lorestan (Iran). Carbonates and Evaporites. doi.org/10.1007/s13146-018-0449-7.
Heydari, E., & Wade, W (2003) Massive recrystallization of low – Mg calcite at high temperatures in hydrocarbon source rocks, Implication for organic acids as factors in diagensis. American Assocation of Petrleum Geologists Bulletin, 86: 1285 – 1303.
Hollis, C., Lawrence, D. A., de Periere, M. D., and Al Darmaki, F (2017) Controls on porosity preservation within a Jurassic oolitic reservoir complex, UAE. Marine and Petroleum Geology. 88: 888-906.
Humphrey, J. D (1988) Late Pleistocene mixing zone dolomitization, south-eastern Barbados, West Indies. Sedimentology., 35: 327-348. doi.org/10.1111/j.1365-3091. 1988. tb00951.x.
James, G. A., and Wynd, J. G (1965) Stratigraphic nomenclature of Iranian Oil Consortium, Agreement Area, American Association of Petroleum Geologists Bulletin, 49(12): 2182-2245. doi.org/10.1306/A663388A-16C0-11D7-8645000102C1865D.
James, N. P., and Choquette, P. W (1990b) Limestone — the sea floor diagenetic environment. In: McIlreath, I., Morrow, D. (Eds.), Diagenesis, Geological Association of Canada Reprint Series, 4:13–34.
James, N. P., and Jones, B (2015) Origin of Carbonate Sedimentary Rocks, Wiley, American Geophysical Union, 464 p.
Janbaz, M., Mohseni, H., Piryaei, A., Swennen, R., Yousefi Yeganeh, B., Souradeghi Sufiani, H (2018) Diagenetic processes of the Shahbazan Formation in the east of the Lorestan zone. Journal Geosciences, 28 (109): 67-82. doi.org/10.22071/GSJ.2017.89098.1151. (In Persian).
Kasih, G. A. A., Chiba, S., Yamagata, Y., Shimizu, Y., & Haraguchi, K (2008) Modelling early diagensis of sediment in Ago Bay, Japan, A comparison of steady satae and dynamic calculation. Ecological Modelling, 215: 40-54. doi.org/10.1016/j.ecolmodel.2008.02.025.
Krause, S., Liebetrau, V., L€oscher, C., Beohm, F., Gorb, S., Eisenhauer, A. and Treude, T (2018) Marine ammonification and carbonic anhydrase activity induce rapid calcium carbonate precipitation. Geochim. Cosmochim. Acta, 243: 116–132. doi.org/10.1016/j.gca.2018.09.018.
Land, L. S (1985) The origin of massive dolomite: Journal of Geological Education, 33: 112-125. dx.doi.org/10.5408/0022-1368-33020112.
Land, L. S (1991) Dolomitization of the Hope Gate Formation (north Jamaica) by seawater: reassessment of mixing zone dolomite. In: Taylor, H. P., O’Neil, J. R., Kaplan, I. R. (Eds.), Stable Isotope Geochemistry: A Tribute to Samuel Epstein, Geochemical Society, Special Publications, 3: 121-133.
Longman, M. W (1980) Carbonate diagenetic textures from near surface diagenetic environments. AAPG Bull., 64: 461-487.
Madden, R., and Wilson, M (2013) Diagenesis of a SE Asian Cenozoic carbonate platform margin and its adjacent basinal deposits, Sedimentary Geology, 286–287: 20–38. doi.org/10.1016/j.sedgeo.2012.11.006.
Mattes, B. W., and Mountjoy, E. M (1980) Burial dolomitization of the Upper Devonian Miette buildup, Jasper National Park, Alberta. In: Concepts and Models of Dolomitization (Eds. D.H. Zenger, J.B. Dunham and R.L. Ethington): SEPM Spec. Publ., 28: 259–297. doi.org/10.2110/pec.80.28.0259.
Messadi, A. M., Mardassi, B., Ouali, J. A., and Touir, J (2016) Sedimentology, diagenesis, clay mineralogy and sequential analysis model of Upper Paleocene evaporite-carbonate ramp succession from Tamerza area (Gafsa Basin: Southern Tunisia): Journal of African Earth Sciences, 118: 205-230.
Miller, J. K., and Folk, R. L (1994) Petrographic, geochemical and structural constraints on the timing and distribution of postlithification dolomite in the Rhaetian Portoro (Calcare nero‖) of the Portovenere Area, La Spezia, Italy. In: B. H. Purser, M. E.
Mirbeik Sabzevari, K., Sedaghatnia, M (2021) Petrography and study of dolomitization model of Shahbazan Formation using elemental analysis (Zagros sedimentary basin, south of Lorestan). Journal of Applied Sedimentology, 10 (19): 54-71.  (In Persian).
Mohseni, H., Abdollahpour, M., Rafiei, B (2012) Petrography and origin of dolomites of Shahbazan Formation (middle to upper Eocene) in east Eslamabade – Gharb (Kermanshah). Journal of New Finding in Applied Geology, 5 (10): 1-11 (In Persian).
Moore, C. H (1989) Carbonate Diagenesis and porosity. Elsevier, Amsterdam. 338pp. Sediment. 9 No, 26, 511pp. Black well Science Oxford.  
Moore, C. H (2013) Carbonate Reservoirs: Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework, Elsevier, Amsterdam. 370 pp.
Moss, S. J., Tucker, M. E (1995) Diagenesis of Barremian-Aptian platform carbonates (the Urgonian Limestone Formation of SE France): near-surface and shallow-burial diagenesis, Sedimentology, 42: 853-874. 
Motiei, H (1993) Geology of Iran (Zagros Stratigraphy), Publication of the Geological Organization, 583p. (In Persian)
Murris, R. J (1980) Hydrocarbon habitat of the Middle East, American Association of Petroleum Geologists, Memoir, 6: 765-800.
Pettijohn, F. J (1975) Sedimentary Rocks. Harper& Row. New York. 628 pp.
Philip, J. M., and Gari, J (2005). Late Cretaceous heterozoan carbonates: Palaeoenvironmental setting, relationship with rudist carbonates (Provence, south-east France): Sedimentary Geology, 175: 315-337.
Piryaei, A., Feyzi, A., Sofiani, H., Hemmat, S., Motamedi, B (2014) Paleogeography of Zagros tertiary deposits, internal report of oil exploration management, Number GR- 2362, 207 P. (In Persian)
Purser, B. H., (1978) Early diagenesis and the preservation of porosity in Jurassic limestone. Journal of Petroleum Geology, 1: 83-94.
Rahimpour Bonnab, H (2010) Carbonate petrography a perspective on reservoir quality. Tehran University, 570 p. (In Persian)
Railsback, L. B (1993) Lithologic controls on morphology of pressure-dissolution surfaces (stylolites and dissolution seams) in Paleozoic carbonate rocks from the Mideastern United States. Journal of Sedimentary Research: 63 (3): 513–522.
Rao, C. P (1996) Modern Carbonates: Tropical, Temperate and Polar: Introduction to Sedimentology and Geeochemistry. Carbonates, Hobart (Tasmania), 206 p.
Ronchi, P., Jadoul, F., Ceriani, A., Giulio, A. D., Scotti, P., Ortenzi, A. and Massara, E. P (2011) Multistage dolomitization and distribution of dolomitized bodies in Early Jurassic carbonate platforms (Southern Alps, Italy), Sedimentology, 58: 532–565.
Salifou, I. A. M., Zhang, H., Boukari, I. O., Harouna, M., and Cai, Z (2021) New vuggy porosity models-based interpretation methodology for reliable pore system characterization, Ordovician carbonate reservoirs in Tahe Oilfield, North Tarim Basin. Journal of Petroleum Science and Engineering, (196): 63-79. 
San Miguel, G., Aurell, M., and Bádenas, B (2017) Diagenetic evolution of a shallow marine Kimmeridgian carbonate ramp (Jabaloyas, NE Spain): implications for hydrocarbon reservoir quality. Arabian Journal of Geosciences, 10 (16): 376 p.
Sanders, D (2001) Burrow-mediated carbonate dissolution in rudist biostromes (Aurisina, Italy), implications for taphonomy in tropical, shallow subtidal carbonate environments. Palaeogeography, Palaeoclimatology, Palaeoecology, 168: 39-74. doi.org/10.1016/s0031-0182(00)00249-2.
Seibel, M. J., & James, N. P (2017) Diagenesis of Miocene, incised Valley – filling limestones: Provence Southern France. Sedimentary Geology, 347: 21 – 35.
Smith, J. V (2000) Three – dimensional morphology and connectivity of Stylolite shape reactivated during veining. Journal of Structural Geology, 22: 59 – 64.
Tucker, M. E (2001) Sedimentary Petrology. 3d Edition, Blackwell, Oxford, 260 p. doi.org/10.107/S00167568000201.
Tucker, M. E., and Wright, V. P (1990) Carbonate Sedimentology: Blackwell, Oxford, 482 p. doi.org/10.1002/9781444314175.
Van Buchem, F. S. P., Allan, T., Lausen, G. V., Lotfpour, M., Moallemi, A., Monibi, S., Motiei, H., Pickard, N., Tahmasbi, A.R., Vedrenne, V., Vincent, B (2010) Regional stratigraphic architecture and reservoir types of the Oligo-Miocene deposits in the Dezful Embayment (Asmari and Pabdeh Formations) SW Iran, 329. Geology Society, London. Special Publication. pp. 219–263. doi.org/10.1144/SP329.10.
Vaziry, H., Safari, A., Shahriari, S., Taheri, A., Khazaei, A. R (2010) Introducing the clastic – carbonate and red clastic sediments of Maastrichtian in high Zagros region (Someirom – Ardal). Journal of Science, University of Tehran, 36 (1): 104-117. (In Persian).
Veizer, J (1983) Chemical diagenesis of carbonates: theory and application of trace element techniques. In Stable isotopes in sedimentary geology: Blackwell Scientific Publications, Oxford, 482p. doi.org/10.2110/scn.83.01.0000.
Walker, K. R., Jernigan, D. G., & Weber, L. J (1990) Petrographic criteria for the recognition of marine, syntaxial overgrowths, and their distribution in geologic time. Carbonates and Evaporites, 5 (2): 141-152.
Wanless, H. R (1979) Limestone response to stress: pressure solution and dolomitization: Jour.Sed. Petrol, 49: 437-462.
Warren, J. K (2000) Dolomite: occurrence, evolution and economically important association: Earth Sci Reviews., 52: 1-81.
Westphal, H (2006) Limestone – Marl alternation as environmental archives and the role of early diagenesis: a critical review. International Journal of Science (Geology Rundsch), 95: 947-961. doi.org/10.1007/s00531-006-0084-8.
Wizemann, A., Nandini, S. D., Stuhldreier, I., S_anchez- Noguera, C., Wisshak, M., Westphal, H., Rixen, T., Wild, C. and Reymond, C.E (2018) Rapid bioerosion in a tropical upwelling coral reef. PLoS One, 13, e0202887. doi.org/10.1371/journal.pone.0202887.
Ying, R., Dakang, Z., Chonglong, G., Queqi, Y., Rui, X., Langbo, J., Yangjinfeng, J., Ningcong, Zh (2017) Dolomite geochemistry of the Cambrian Longwangmiao Formation, eastern Sichuan Basin: Implication for dolomitization and reservoir prediction. Petroleum Research 2 (2017) 64e76.
Zaid, S. M (2012) Provenance, diagenesis, tectonic setting and geochemistry of Rudies sandstone (lower Miocene), Warda Field, Gulf of Suez, Egypt. J. African Earth Sci, 66: 56- 71. doi.org/10.1016/j.jseaes.2008.01.004.
Zeigler, M. A (2001) Late Permian to Holocene paleofacies evolution of the Arabian plate and its hydrocarbon occurrences. GeoArabia, 6(3): 445-504. doi.org/10.2113/geoarabia0603445.
Zenger, D. H (1983) Burial dolomitization in the Lost Burro Formation/Devonian, east central California and the significance of late diagenetic dolomitization: Geology, 11: 519-522.
Zhang, H., Ding, L., Wang, X., Wang, L., Wang, Q. and Xia, G (2006) Carbonate Diagenesis Controlled by Glacioeustatic Sea-Level Changes: A Case Study from the Carboniferous-Permian Boundary Section at Xikou, China. J. China Univ. Geosci, 17: 103- 114. doi.org/10.1016/S1002-0705(06)60014-9.
Zohdi, A., Moallemi, A., Moussavi-Harami, R., Mahboubi, A., Richter, D. K., Geske, A., Nickandish, A., and Immenhauser, A (2014) Shallow burial dolomitization of an Eocene carbonate platform, southeast Zagros Basin, Iran: GeoArabia, 19: 17-54. doi.org/10.2113/geoarabia190417.