مطالعات زمین شناسی مجموعه افیولیت اللهیارلو، شمال غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشگاه پیام‌نور، ایران

2 گروه مهندسی معدن، دانشگاه بین‌المللی امام خمینی (ره)، قزوین

چکیده

سنگ‌های اصلی این مجموعه از توالی گابرو و سنگ­هایی نفوذی الترابازیکی و پریدوتیتی تشکیل شده‌اند و هم­چنین شامل پلاژیوگرانیت‌ها بوده و از بازالت­های بالشی بزرگی که بصورت بین لایه‌ای با سنگ‌های رسوبی پلاژیک همراه با چرت‌های رادیولردار تشکیل شده‌اند. داده‌های عناصر ناسازگار بهنجار شده نسبت به گوشته اولیه و کندریت نشان می‌دهند که افیولیت اللهیارلو از بازالت‌هایی با منشأ گوشته‌ای حاصل آمده است. براساس داده‌های عناصر نادر خاکی (REE)، تمام سنگ‌های افیولیت اللهیارلو، سنگ‌های همزاد و حاصل تفریق ماگمایی با منشأ بازالت‌های پشته‌های میان اقیانوسی از نوع آرایه گوشته­ای مورب غنی شده (E-MORB) هستند. سنگ‌های گابرو، بازالت، پلاژیوگرانیت و متاگابرو همگی خصوصیات کالک­آلکالن از خود نشان می‌دهند. سنگ‌های افیولیتی اولترامافیک و بازالت‌های  بالشی به ترتیب در طول پالئوزوئیک پسین تا تریاس پسین تشکیل شده‌اند. بازسازی صفحات تکتونیکی نشان می‌دهد که سنگ‌های این مجموعه تقریباً همزمان با افیولیت‌های نواحی مشهد و رشت تشکیل شده‌اند و سن تبلور آن‌ها حدوداً 380 میلیون سال است. مجموعه سنگ‌های افیولیت اللهیارلو نشان­دهنده موقعیت شمالی پوسته اقیانوسی پالئوتتیس بوده و پوسته پالتوتتیس در این زمین درز افیولیتی از پالئوزوئیک فوقانی تا تریاس پسین حفظ شده است. این مجموعه هم­چنین شامل کربنات‌های پلاژیک و بازالت‌ها به عنوان لایه‌های میانی یا قطعات بیگانه هستند. نتایج مطالعات چینه­شناسی، شواهد بیواستراتیگرافی مربوط به دوران پالئوزوئیک را نشان می‌دهد. شواهد بدست آمده حاکی از آن است که اگرچه ریفت اولیه و متبلور شدن پوسته اقیانوسیِ افیولیتِ اللهیارلو در کربونیفر آغاز شده، اما فعالیت‌های آتشفشانی همچنان تا تریاس پسین ادامه داشته است.

کلیدواژه‌ها


عنوان مقاله [English]

Geological Studies of Ophiolite Collection Allahyarlu, Northwest of Iran

نویسندگان [English]

  • Sh. Hassanpour 1
  • S. Senemari 2
1
2
چکیده [English]

The principal rock units are a gabbro sequence, late intrusive rocks that consist largely of the plagiogranite and volcanic rocks, which are largely pillow basalts interbedded with pelagic sedimentary rocks, including radiolarian cherts. Chondrite- and primitive mantle-normalized incompatible trace element data indicate that the Lahroud ophiolite was derived from a within plate basalt-like mantle source. All rocks are cogenetic geochemically and were derived by fractionation from melts with a composition similar to average E-MORB with calc-alkaline signatures. Plate reconstructions suggest that the rocks appear to be approximately contemporaneous with the Mashhad ophiolites and Rasht ophiolite, which has a crystallization age of ~380 Ma. Rocks from the Lahroud ophiolite complex represent northern Paleo-Tethyan ocean crust that was formed distinctly earlier than crust preserved in the Ma Paleo-Tethys suture zone ophiolite from upper Paleozoic to Later Teriassic. The results from microfossil studies show the presence of Paleozoic biostratigraphy (e.g., Paleotextularia, Nodosinella cf. concinna, Pseudokahlerina, Cylindrica, Earlandia, Endothyra baileyi, pachyphloia, Fusulinella Stafella and Bivalve, Paratikhine). The data suggest that although the initial rifting and crystallization of the oceanic crust of the Lahroud ophiolite began in the Carboniferous, with volcanic activities continuing through to the late Triassic.

کلیدواژه‌ها [English]

  • Ophiolite
  • Paleo-Tethys
  • Allahyarlou
  • Lahroud
Alavi, M (1991) Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran. Geological Society of America Bulletin, 103: 983-992.
 Arvin, M., & Robinson, P. T (1994) The petrogenesis and tectonic setting of lavas from the Baft ophiolitic melange, southwest of Kerman, Iran. Canadian Journal of Earth Sciences, 31: 824–834.
Aharipour, R., Moussavi, M. R., Mosaddegh, H., & Mistiaen, B (2010) Facies features and paleoenvironmental reconstruction of the Early to Middle Devonian syn-rift volcano sedimentary succession (Padeha Formation) in the Eastern-Alborz Mountains, NE Iran.  Facies, 56: 279 – 294.
Babaie, H. A., Ghazi, A. M., Babaei, A. A., La Tour, T. E., & Hassanipak, A. A (2001) Trace element geochemistry of the volcanic rocks of the Neyriz ophiolite, Iran. Journal of Asian Earth Sciences, 19: 61– 67.
Bagheri, S., & Stampfli, G. M (2008) The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: New geological data, relationships and tectonic implications. Tectonophysics, 451: 123–155.
Buchs, D. M., Bagheri, S., Martin, L., Hermann, J., & Arculus, R (2013) Paleozoic to Triassicocean opening and closure preserved in Central Iran: Constraints from the geochemistry ofmeta-igneous rocks of the Anarak area. Lithos, 172(173): 267-287.
Boulin, J (1988) Hercynian and Eocimmerian events in Afghanistan and adjoining regions. Tectonophysics, 148: 253-278.
Berberian, M., Amidi, S. M., & Babakhani, A. (1981) Discovery of the Qaradagh ophiolite belt, the southern continuation of the Sevan-Akera (Little Caucasus) ophiolite belt in northwestern Iran (Ahar quadrangle); a preliminary field note.  Geol. Surv. Iran, Internal Report, 15p (in Persian).
Boulin, J (1980) Introduction a la geologie des Monts de Turkman, en Afghanistan: l'importance des evenements hercyniens et cimmeriens. Revue de Geologie Dynamique et de Geographie Physique, 3: 187-199.
Boulin, J. 1988. Hercynian and Eocimmerian events in Afghanistan and adjoining regions. Tectonophysics, 148: 253-278.
Coleman, R. G (1977) Ophiolites-ancient oceanic lithosphere (Minerals and Rocks). V, 12, Berlin, Heidelberg, and New York (Springer-Verlag)., 229 p.
Dilek, Y (2003) Ophiolite concept and its evolution. In: Dilek, Y., Newcomb, S., (eds.), Ophiolite Concept and the Evolution of Geological Thought, Geological Society of America Special Paper, 373: 1–16.
Dai, J. G., Wang, C. S., Hebert, R., Santosh, M., Li, Y. L., & Xu, J. Y (2011) Petrology and geochemistry of peridotites in the Zhongba ophiolite, Yarlung Zangbo Suture Zone: Implications for the Early Cretaceous intra-oceanic subduction zone within the Neo-Tethys.  Chemical Geology, 288: 133-148.
Eftekharnezhad, J., & Behroozi, A (1991) Geodynamic significance of recent discoveries of ophiolites and Late Paleozoic rocks in NE Iran (including Kopet Dagh). Abhandlungen der Geologischen Bundesanstalt, 38: 89-100.
Ghazi, A. M., Pessagno, E. A. Hassanipak, A. A, Kariminia, S. M., Duncan, R. A., & Babaie H. A (2003) Biostratigraphic zonation and 40Ar-39Ar ages forthe Neotethyan Khoy ophiolite of NW Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 193: 311-323.
Ghazi, A. M., & Hassanipak, A. A. (2000) Geochemistry and petrology of the Shahr-e-Babak ophiolites, Central Iran. Proceedings of Penrose Conference on Ophiolites and Oceanic Crust: New Insights from Field Studies and Ocean Drilling Program. Geological Society of America Special Paper, 349: 485– 497.
Ghazi, M., Hassanipak, A. A., Tucker, P. J., & Mobasher. K (2001) Geochemistry and 40Ar-39Ar ages of the Mashhad Ophiolite, NE Iran. Eos. Trans. AGU, 82: 47.
Gamkrelidze, I. P., Shengelia, D. M., Shvelidze, Iu. U., & Vashakidze, G. T (1999) The new dataabout geological structure of the Lokhi crystalline massif and Gorastskali metaophiolites. Proceedings of Geological Institute of Academy of Sciences Georgia, New Series, 114: 82-108.
Hassanpour, S (2018) The Lost Puzzle of Paleo-Tethys Suture Zone in NW Iran: New Evidence from Geochemical Characteristics, Rb-Sr-Sm-Nd-Pb isotopes, 40Ar–39Ar Age dating, Biostratigraphy and Original Tectonic Settings of the Lahroud Ophiolite. International journal of earth sciences, under review.
Heubeck, C (2001) Assembly of central Asia during the middle and late Paleozoic. In: Hendrix, M. S., Davis, G. A. (eds.), Paleozoic and Mesozoic Tectonic Evolution of Central Asia; from Continental Assembly to Intracontinental Deformation, Geological Society of America Memoir, 194: 1–22.
Jian, P., Liu, D., Kroner, A., Zhang, Q., Wang, Y., Sun, X., & Zhang, W (2009a) Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (I): Geochemistry of ophiolites, arc/back-arc assemblages and within-plate igneous rocks.  Lithos, 113: 748-766.
Jian, P., Liu, D., Kroner, A., Zhang, Q., Wang, Y., Sun, X., & Zhang, W (2009b). Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (II): Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos, 113: 767-784.
Jiang, C., Yang, J., & Feng, B (1992) Opening and closing Tectonics of the Kunlun Mountains. Geological Publishing House, Beijing.
Karimpour, M. H., Stern, C. R., & Farmer, G. L (2010) Zircon U–Pb geochronology, Sr–Nd isotope analyses, and petrogenetic study of the Dehnow diorite and Kuhsangi granodiorite (Paleo-Tethys), NE Iran. J. Asian Earth Sci., 37: 384–393.
Li, C., Xiao, W., Han, C., Zhou, K., Zhang, J., & Zhang, Z (2014) Late Devonian-Early Permian accretionary orogenesis along the North Tianshan in the southern Central Asian Orogenic Belt. International Geology Review, 68.
Mirsakhanov, M. W. (ed.) (1989) Geologic map of Turkmenistan, scale 1:500000. Turkmengeologyia Ashkabad (in Russian).
McCall, G. J. H (1985) Area report, east Iran, area no. 1. Geological Survey of Iran Report, 57: 643.
Mirnejad, H., Lalonde, A. E., Obeid, M., & Hassanzadeh, J (2013) Geochemistry and petrogenesis of Mashhad granitoids: an insight into the geodynamic history of the Paleo-Tethys in northeast of Iran. Lithos, 170–171: 105–116.
McCall, G. J. H (1997) The geotectonic history of the Makran and adjacent areas of southern Iran. Journal of Asian Earth Sciences, 15: 517– 531.
Meng, F., Cui, M., Wu, X., & Ren, Y (2013) Heishan mafic–ultramafic rocks in the Qimantag area of Eastern Kunlun, NW China: Remnants of an early Paleozoic incipient island arc. Gondwana Research, 23: 825-836.
Omrani, H., Moazzen, M., Oberhansli, R., Tsujimori, T., Bousouet, R., & Moayyed, M (2013) Metamorphic history of glaucophane-paragonite-zoisite eclogites from the Shanderman area, northern Iran.  Journal of Metamorphic Geology, 31: 91-812.
Ruttner, A. W (1993) Southern borderland of Triassic Laurasia in northeast Iran. Geologische Rundschau, 82: 110-120.
Robert, A. M. M., Letouzey, J., Kavoosi, M. A., Sherkati, S., Muller, C., Verges, J., & Ghababaei, A (2014) Structural evolution of the Kopeh Dagh fold-and-thrust belt (NE Iran) and interactions with the south Caspian Sea Basin and Au Darya Basin. Marine and PetroleumGeology, 57: 68-87.
Rolland, Y., Sosson, M., Adamia, Sh., & Sadradze, N (2011) Prolonged Variscan to Alpine history of an active Eurasian margin (Georgia, Armenia) revealed by 40Ar/39Ar dating. Gondwana Research, 20: 798-815.
Stocklin, J (1974) Possible ancient continental margins in Iran. In: Burke, C.A., Drake, C.L. (eds.), The Geology of Continental Margins. Springer-Verlag, New York, 873–887.
Shojaata, B., Hassanipaka A. A, Mobasherb, K., & Ghazi, A. M (2003) Petrology, geochemistry and tectonics of the Sabzevar ophiolite, North Central Iran. Journal of Asian Earth Sciences, 21: 1053–1067.
Shafaii Moghadam, H., & Stern, R. J (2011) Geodynamic evolution of upper Cretaceous Zagrosophiolites: formation of oceanic lithosphere above a nascent subduction zone. Geological Magazine, 148: 762-801.
Shafaii Moghadam, H., Zaki Khedr, M., Arai, S., Stern, R. J., Ghorbani, G., Tamura, A., & Ottley, C. J (2013) Arc-related harzburgite-dunite-chromitite complexes in the mantle section of the Sabzevar ophiolite, Iran: a model for formation of podiform chromitites. Gondwana Research, http://dx.doi. org/10 .1016/j. gr. 2013.09.007.
Shafaii Moghadam, H.; Li1, .H., Ling, X. X., Stern, R. J , Khedr, M. K , Chiaradia, M., Ghorbani, M., Shoji, A., & Tamura, A (2014) Devonian to Permian evolution of the Paleo-Tethys Ocean: New evidence from U-Pb zircon dating and Sr-Nd-Pb isotopes of the Darrehanjir-Mashhad ophiolites, NE Iran. Gondwana Research, Article in press.
Schwab M., Ratschbacher, L., Siebel, W., McWilliams, M., Minaev, V., Lukov, V., Chen, F., Stanek, K., Nelon, B., Frisch, W., & Wooden, J. L (2004) Assemblay of the Pamirs: Age andorigin of magmatic belts from the southern Tien Shan to the southern Pamirs and theirrelation to Tibet. Tectonics, 23, doi: 10.1029/2003TC001583.
Shi, R., Griffin, W. L., O'Reilly, S. Y., Huang, Q., Zhang, X., Liu, D., Zhi, X., Xia, Q., & Ding. L (2012) Melt/mantle mixing produces podiform chromite deposits in ophiolites: Implications of Re–Os systematics in the Dongqiao Neo-tethyan ophiolite, northern Tibet. Gondwana Research, 21: 194-206.
Stampfli, G. M (1978) Etude Geologique generale de l'Elbourz oriental au sud de Gonbad-e- Qabus (Iran, NE).  PhD Thesis, Universite de Geneve, 329 pp.
Sengor, A. M. C., & Natalin, B. A (1996) Paleotectonics of Asia: Fragments of a synthesis. In: Yin, A. and Harrison, T.M. (eds), The Tectonic Evolution of Asia. Cambridge University Press, 486-640.
 Su, B. Q., Qin, K. Z., Sakyi, P. A., Li, X.-H., Yang, Y. H., Sun, H., Tang, D. M., Liu, P. P., Xiao, Q. H., & Malaviarachchi, S. P. K (2011) U–Pb ages and Hf–O isotopes of zircons from Late Paleozoic mafic–ultramafic units in the southern Central Asian Orogenic Belt: Tectonic implications and evidence for an Early-Permian mantle plume. Gondwana Research, 20: 516-531.
Stampfli, G. M., & Borel, G. D (2002)A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196: 17–33.
Stampfli, G. M., Marcoux, J., & Baud, A (1991) Tethyan margins in space and time. Palaeogeography, Palaeoclimatology, Palaeoecology, 87: 373-409.
 Takin, M (1972) Iranian geology and continental drift in the Middle East. Nature, 235: 147– 150.
Treloar, P. J., Mayringer, F., Finger, F., Gerdes, A., & Shengalia, D (2009) New age data from the Dzirula Massif, Georgia: implications for Variscan evolution of the Caucasus. 2nd International Symposium on the Geology of the Black Sea Region, Abstract book, pp. 204-205.
Torabi, G., ShirdaShtzadeh, N., arai, S. & KoepKe, J (2011) Paleozoic and Mesozoic ophiolites of Central Iran: amphibolites from Jandaq, Posht-e-Badam, Nain and Ashin ophiolites. – N. Jb. Geol. Paläont. Abh. 262: 227–240; Stuttgart.
Zanchetta, S., Berra, F., Zanchi, A., Bergomi, M., Caridroit, M., Nicora, A., & Heidarzadeh, G (2013) The record of the Late Palaeozoic active margin of the Palaeotethys in NE Iran: Constraints on the Cimmerian orogeny. Gondwana Research, 24: 1237-1266.
Zanchi, A., Zanchetta, S., Berra, F., Mattei, M., Garzanti, E., Molyneux, S., Nawab, A., & Sabouri, J (2009) The Eo-Cimmerian (Late Triassic) orogeny in north Iran.In M.-F.Brunet, M. Wilmsen and J.W. Granath (eds.), South Caspian to Central Iran Basins.  Geological Society of London Special Publication, 312: 31-55.
Zhai, Q. G., Jahn, B. M., Wang, J., Su, L., Mo, X. X., Wang, K. L., Tang, S. H., & Lee, H. Y (2013) The Carboniferous ophiolite in the middle of the Qiangtang terrane, Northern Tibet: SHRIMP U–Pb dating, geochemical and Sr–Nd–Hf isotopic characteristics. Lithos, 168–169: 186-199.
Zanchetta, S., Zanchi, A., Villa, I., Poli, S., & and Mottoni, G (2009) The Shanderman Eclogites: a Late Carboniferous high-pressive event in the NW Talesh Maontains (NW Iran). In: Brunet, M.F., Wilmsen, M., Granath, J.W. (eds) South Caspian to Central Iran Basins. Geological Society, London, Special Publications, 312: 57-78.
Zakariadze, G. S., Dilek, Y., Adamia, S. A., Adamia, Sh. A., Oberhansli, R. E., Karpenko, S. F., Bazylev, B. A., & Solov'eva, N (2007) Geochemistry and geochronology of the Neoproterozoic Pan-African Transcaucasian Massif and implications for island arc evolution of the Late Precambrian Arabian-Nubian Shield. Gondwana Research, 11: 92-108.