پترولوژی و ژئوشیمی سنگ های آتشفشانی جوان مناطق کوه سیاه و طهمورث کردستان

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زمین‌شناسی، دانشگاه ارومیه، ارومیه

چکیده

در شمال خاوری سنندج، در پهنه­ی ساختاری سنندج – سیرجان، سنگ­های آتشفشانی کواترنری کوه سیاه و طهمورث، رخنمون دارند. از فنوکریست­های این سنگ­ها می­توان به اولیوین و کلینوپیروکسن اشاره کرد. این سنگ­های متاآلومینوس ترکیبی از بازالت، تراکی­بازالت و بازالت هاوائیت داشته و سرشتی شوشونیتی و آلکالن دارند. محیط تکتونیکی پیدایش این سنگ­ها درون­صفحه­­­ای ارزیابی شده است. بر اساس مطالعات ژئوشیمی ذوب در محدوده­ی گارنت – اسپینل لرزولیت، انجام گرفته اسـت. این سـنگ­های بازیک، از عـناصر LILE غنی­شدگی داشته و مقادیر کمتری از عناصر HFSE داشته اند. عناصر LREE نیز دارای فراوانی بیش­تری از عناصر HREE هستند. غنی‌شدگی ازLREE  را می‌توان به تأثیر تحولات ماگمایی (عمق زیاد و درصد ذوب بخشی کم) و محیط تکتونیکی تشکیل این سنگ­ها، نسبت داد. تهی­شدگی قابل­توجه از HREE را می‌توان به باقی ماندن گارنت در فاز تفاله و عدم مشارکت این کانی در فرایند تولید مذاب مرتبط دانست.این آلکالی بازالت­ها از نوع غنی از نئوبیوم بوده و با مختصات معرفی شده برای آن­ها از قبیل Sr/Y>25، La/Yb>14 و Rb/Sr و Yb اندک، همخوانی دارند.لیکن برای اثبات این نکته نیاز به تحقیقات ایزوتوپی وجود دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Petrology and geochemistry of Kuh-Siyah and Tahmoures areas young volcanic rocks, Kurdistan

نویسندگان [English]

  • P. Ghaderi
  • M. Modjarrad
چکیده [English]

At the structural of Sanandaj - Sirjan, Zone of Iran (Kurdistan providence) Kuh-Siyah and Tahmoures young volcanic rocks are exposed. The main phenocrystals of these rocks consist of olivine and clinopyroxene. These metaluminous rocks are combinations of trachy basalt, basalt to havaiite have shoshonitic to alkaline affinities. Based on geochemical studies, the partial melting of a garnet - spinel Lherzolitic source was responsible for the magma generation. The basic rocks, have LILE enrichment and low content of HFSE. Enrichment of LREE can influence magmatic evolution (High depth and low partial melting degree) and tectonic setting of the formation of rocks, attributed. Significant depletion of HREE could be as a result of residue of the mineral garnet phase in the liquid production process. The studied alkali-basalts have all the high Nb basalts signatures such as Nb>18 ppm, Sr/Y>25, La/Yb>14, low Rb/Sr and Yb. Hence these are high Nb basalts, but isotopic investigations are required to confirm it.

کلیدواژه‌ها [English]

  • Petrology
  • Geochemistry
  • Quaternary
  • Kuh-Siyah
  • Tahmoures
  • Kurdistan
اثنی­عشری، ا. و سرجوقیان، ف (1395) خاستگاه اولیوین در سنگ­های اولترامافیک منطقه ملاطالب و نقش اولیوین در سیر شکل­گیری ماگما. مجله بلورشناسی و کانی­شناسی ایران، شماره اول، 145-154.
باجلان، ع. و شریفی، م (1393) بررسی پتروگرافی و پترولوژی سنگ­های آتشفشانی کواترنر قزل­قلعه واقع در شمال­شرق قروه. مجله زمین­شناسی اقتصادی، شماره 6، 329-315.
ترکیان، ا. و صالحی، ن (1393) مطالعه پتروگرافی، ژئوشیمی و تعیین خاستگاه سنگ­های بازالتی شمال­شرق قروه (کردستان). مجله پترولوژی اصفهان، شماره 19، 52-37.
رضوی، م. ح. و سیاره، ع (1389) ویژگی سنگ­های آتشفشانی جوان در جنوب­خاوری بیجار. مجله علوم­زمین، شماره 75، 156-151.
زاهدی، م (1369) شرح نقشه 1:250000 سنندج. سازمان زمین­شناسی کشور، 65 ص.
شیخ ذکریایی، س.ج.، اشجع اردلان، ا. و طربی، س (1393) پتروگرافی و ژئوشیمی کوه قرینه، شمال­شرق قروه (غرب ایران). زمین­شناسی محیط­زیست، شماره 8 (27)، 79-63.
فنودی، م.، صافی، ا.، سیاره، ع. ر ( 1383) نقشه­ی 1:100000 بیجار. سازمان زمین­شناسی کشور.
قاسمی، ح. و درخشی، م (1387) کانی­شناسی، ژئوشیمی و نقش فرایند مـکانیکی بلورهای اولـیوین در تـشکیل سنگ­های آذرین پالئوزوییک زیرین منطقه شیرگشت، شمال­غرب طبس، ایران. مجله بلورشناسی و کانی­شناسی ایران، شماره 2، 207-224.
قدسی، م. ر.، بومری، م.، باقری، س. و ناکاشیما، ک (1395) بررسی شیمی کانی بیوتیت در گرانیتوئید مکسان، جنوب شرق ایران. مجله بلورشناسی و کانی­شناسی ایران، شماره اول، 33-44.
مجرد، م. و رحیم­سوری، ی (زیر چاپ) تفکیک بازالت­ها، تراکیت­ها و تراکی­آندزیت­های جوان مهاباد از جنبه­های ژئوشیمیایی و محیط تکتنوماگمایی؛ لزوم اصلاح ورقه 1:100000 مهاباد. مجله پترولوژی اصفهان (زیر چاپ). 
معین­وزیری، ح (1377) دیباچه­ای بر ماگماتیسم ایران، انتشارات دانشگاه تربیت معلم، 440ص.
معین­وزیری، ح. و امین­سبحانی، ا (1364) مـطالعه­ی آتشفشان­های منطقه­ی تکاب-قروه. انتشارات دانشگاه تربیت معلم تهران، 1- 48.
Aftabi, A., and Atapour, H (2000) Regional aspects of shoshonitic volcanism in Iran. Episodes 23 (2): 119-125.
Aldanmaz, E., Pearce, J. A., Thirlwall, M. F. and Mitchell, J. G (2000) Petrogenetic evolution of late Cenozoi post-collision volcanism in western Anatolia Turkey. Journal of Volcanology and Geothermal Research, 102: 67-95.
Allen M. B., Kheirkhah M., Emami M. H. and Jones S. J (2011) Right-lateral shear across Iran and kinematic change in the Arabia-Eurasia collision zone. Geophysical Journal International, 184: 555 - 574.
Allen, M. B., Kheirkhah, M., Neill, I., Emami, M. H. and Mcleod, C. L (2013) Generation of Arc andWithin-plate Chemical Signatures in Collision Zone Magmatism: Quaternary Lavas from Kurdistan Province, Iran. Journal of Petrology, 54: 887-911.
Asiabanha, A, Bardintzeff, J. M. and Veysi, S (2018) North Qorveh volcanic field, western Iran: eruption styles, petrology and geological setting. Mineralogy and Petrology, 12: 501-520.
Azizi, H., Asahara, Y. and Tsuboi, M (2014) Quaternary high-Nb basalts: existence of young oceanic crust under the Sanandaj–Sirjan Zone, NW Iran.International Geology Review, 56: 167-186.
Barbarin, B (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46: 605-626.
Berberian,  F. and  King,  M (1981) Tectonic-plutonic episode in Iran. In: Delany F. M., Gupta H. K. (Eds.) Am. Geophys. Union Geodynamics Series: 5-32.
Castillo, P. R (2008) Origin of the adakite–high-Nb basalt association and its implications for post subduction magmatism in Baja California, Mexico. Geological Society of America Bulletin, 120: 451–462.
Cox, K. G., Bell J. D. and Pankurst R. J (1979) The interpretation of Igneous rocks. Londan,Unwin – Hyman Ltd, 450 pp.
Dallwitz, W. B., Green, D. H., and Thompson, J. E (1966) Clinoenstatite in a volcanic rock from the Cape Vogel area, Papua. Journal of Petrology, 7: 375–403.
Ewart, A (1982) The mineralogy and petrology of Tertiary-Recent orogenic volcanic rocks: with special reference to the andesitic-basaltic compositional range. Andesites: Orogenic Andesites and Related Rocks, 7: 25-98.
Gorton, M. P. and Schandl, E. S (2009) From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rock. The Canadian Mineralogist, 38: 1065-1073.
Haschke, M., Siebel, W., Gunther, A. and Scheuber, E (2002) Repeated crustal thickening and recycling during the Andean orogeny in north Chile. Journal of Geophysical Research Atmospheres, B1: 107.
Hastie, A. R., Mitchell, S. F., Kerr, A. C., Minifie, M. J., and Millar, I. L (2011) Geochemistry of rare high-Nb basalt lavas: Are they derived from a mantle wedge metasomatised by slab melts? Geochemica et Cosmochemica Acta, 75: 5049–5072.
Irvine, T. N. and Baragar, W. R. A (1971) A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8: 523-48.
Krauskopf, K. P. and Bird D (1976) Introduction to geochemistry. Mc Graw Hill, 788 pp.
Kretz, R (1983) Symbols for rock-forming minerals. American mineralogist, 68, 1-2: 277-279.
Kuno, H (1968) Differentiation of basalt magma .In: Hess, H. H. and Poldervaart, A. (eds.), Basalts: Thepoldervaart trties on rocks. International science, Newyork, 2: 623-688.
Lee, D. C., Halliday, A. N., Davies, G. R., Essene, E. J., Fitton, G. and Temdjim, R (1996) Melt Enrichment of Shallow Depleted Mantle: a Detailed Petrological, Trace Element and Isotopic Study of Mantle- Derived Xenoliths and Megacrysts from the Cameroon Line. Journal of Petrology, 37: 415-441.
Machado, A., Lima, E. F., Chemale, F., Morata, D., Oteiza, O., Almeida, D. P. M., Figueiredo, A. M. G., Alexandre, F. M. and Urrutia, J. L (2005) Geochemistry constraints of Mesozoic–Cenozoic calc-alkaline magmatism in the South Shetland arc, Antarctica. Journal of South American Earth Sciences, 18 (3): 407-425.
Mackenzie, D. E. and Chappell, B. W (1972) Shoshonitic and calc-alkaline lavas from the Highlands of Papua New Guinea. Contribution to Mineralogy and Petrology, 35: 50–62.
McKenzie, D. and O’Nions, R. K (1991) Partial melt distribution from inversion of rare earth element concentrations. Journal of Petrology, 32: 1021-1091.
Meffre, S., Aitchison, J. C. and Crawford, A. J (1996) Geochemical evolution and tectonic significance of boninites and tholeiites from the Koh ophiolite, New Caledonia. Tectonics, 15: 67–83.
Nakamura, E., Campbell, I. H., McCulloch, M. T. and Sun, S. S (1989) Geochemical Geodynamics in a back arc region around the Sea of Japan: implications for the genesis of alkaline basalts in Japan, Korea and China.  Journal of Geophysical Research, 94: 4634-4654.
Pearce, J. A. and Norry, M. J (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to mineralogy and petrology, 69 (1): 33-47.
Pearce, J. A (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe, R. S. (ed.) Andesites: Orogenic Andesites and Related Rocks. John Wiley and Sons New York, 525-548.
Pearce, J. A (1996) A user’s guide to basalt discrimination diagrams. In: Wyman D. A. (ed.), Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. Geological Association of Canada. Short Course Notes, 12: 79–113.
Pearce, J. A. and Cann, J. R (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19 (2): 290-300.
Peccerillo, A. and Taylor, S. R (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58 (1): 63-81.
Philpotts, A. R (1990) Principles of igneous and metamorphic Petrology. Prentice Hall, New Jersey.
Polat, A. and Kerrich, R (2001) Magnesian andesites, Nbenriched basalt-andesites, and adakites from late Archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada: Implications for late Archean subduction zone petrogenetic processes. Contributions to Mineralogy and Petrology, 141: 36–52.
Ramos, V. A. and Kay, S. M (1992) Southern Patagonian plateau basalts and deformation: back arc testimony of ridge collisions. In: Oliver R. A., (eds) Andean Geodynamics Tectonophysics, 205: 261-282.
Reagan, M. K. and Gill, J. B (1989) Coexisting calcalkaline and high-niobium basalts from Turrialba Volcano, Costa Rica: Implications for residual titanates in arc magma sources. Journal of Geophysical Research, 94: 4619–4633.
Rollinson, H. R (1993) Using geological data. Evolution Presentation Interpretation Longman, 560p.
Stocklin, J (1968) Stractural history and tectonics of Iran'' a review. AAPG Bulletin, 52: 1229-1258.
Sun S. S. and McDonough, W. F (1989) Chemical and isotopic systematics of oceanic basalts, implications for mantle composition and processes. Geological Society of London, 1-19.
Thieblemont, D. and Tegyey, M (1994) Une discrimination geochimique des roches differenciees temoni de la diversite d origine et de situation tectonique des magmas calco-alcalins. Comptes Rendus Academic Sciences, 319: 87-94.
Vasques, M. and Altenberger, U (2005) Mid-Cretaceous extension-related magmatism in the eastern Colombian Andes. Journal of South American Earth Sciences, 20: 193–210.
Vermeesch, P (2006) Tectonic discrimination of basalts with classification trees. Geochimica et Cosmochimica Acta, 70: 1839-1848.
Winchester, J. A. and Floyd, P. A (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325–342.
Winter, J. D (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall, 697 p.
Wood, D. A (1980) The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50: 151-162.