هیدروژئوشیمی، منشاء و روند تغییرات ترکیب آب چاه‌های‌گازدار منطقه همه‌کسی (همدان)

نویسنده

بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی، همدان

چکیده

آب تعدادی از چاه­های­ کشاورزی استان همدان (از جمله در پیرامون روستای همه­کسی)، دارای جوششی از گاز بوده و مزه ترش، گس و سوزنده دارد. شناسایی منشاء و روند تغییر ترکیب آن، برای برنامه­ریزی و ادامه­یِ استفاده از آن مهم می‌باشد. لذا در این پژوهش، منشاء ناهنجاری و روند تغییر ترکیب آن مورد ارزیابی قرار گرفته است. به همین منظور، تعداد شش حلقه چاه آب­گازدار شناسایی و هدایت الکتریکی آب آن­ها، 15 مرتبه در طی سه سال (هر سال پنج بار) اندازه­گیری گردید و روند تغییرات آن­ توسط نرم‌افزار SPSS مورد بررسی قرار گرفت. علاوه بر این، از هر چاه­ یک نمونه‌‌ آب برداشت و برای تعیین مقادیر قلیائیت­کل، هدایت الکتریکی، کاتیون­ها و آنیون­ها مورد تجزیه قرار گرفت. سپس شاخص­های شیمیایی آن محاسبه و به کمک دیاگرام‌های مختلف مورد ارزیابی قرار گرفت. نتایج نشان داد که آب تمامی چاه­ها، جزو آب­های تازه، کم عمق و از تیپ Ca-Mg-HCO3 می­باشد. در این آب‌ها، غلظت دی­اکسیدکربن محلول به بیش از 1000 میلی­گرم بر لیتر می­رسد. بنابراین، نا­هنجاری شیمیایی آب چاه­ها، ناشی از واکنش بین آب و سنگ مخزن و دخالت سیالات گرمابی گازدار است. بخشی از سنگ مخزن از آهک و بخش دیگر آن از رسوبات مارنی و تبخیری (مربوط به محیط­های کولابی) تشکیل شده است. بررسی آماری روند تغیبرات ترکیب آب چاه­ها، نشان می­دهد که مقدار هدایت­الکتریکی آن­ها بطور معنی­داری با گذشت زمـان کاهـش می­یابد که اولا مهر تائیدی بر دخالت سیالات گرمابی در واکنش آب-سنگ است و ثانیا امیدی برای بهتر شدن کیفیت آب چاه­های کشاورزی در آتی می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Hydrogeochemical, origin and trending of the changes composition of water from gaseous wells in the Hamehkasi area (Hamadan)

نویسنده [English]

  • M. Amiri
چکیده [English]

Groundwater in some of the agricultural wells of Hamadan Province (including around the Hamehkasi village) has bubbles of gas and physically its taste is sour, bitter and burning. To postulate its origin and the trend of variation of the composition is important task for planing and continous  using. Therefore, in this research, the origin of anomalies and the trending of its composition change was evaluated. For this purpose, six gaseous wells were identified and their electrical conductivity was monitored15 times over three years (five times each year). The trending of their electrical conductivity changes were evaluated by SPSS software. Additionally, from each well, one sample was collected and for determination of the total alkalinity, Electrical Conductivity, Cations and Anions were analyzed. Thier chemical indices were calculated and evaluated by using different diagrams. The results showed that the water of all wells is fresh, show the Ca-Mg-HCO3 type. In these waters, the concentration of soluble carbon dioxide is more than 1000 mg/L. The abnormal composition of wells water due to from reaction between the water and the reservoir rock with involvement of hydrothermal fluids. Part of the reservoir rock consists of lime and the other part consists of marl and evaporite sediments. The statistical analysis of trending of water composition change indicates that the electrical conductivity decreases significantly over time, which  firstly, confirms the involvement of hydrothermal fluids in rock-water reaction and secondly, it will be the hope of improving the water quality in future.

کلیدواژه‌ها [English]

  • poor quality water
  • Hydrothermal fluids
  • Rock-water reaction
  • HamehKasi
  • Hamadan

افشانی، ع.، نوریان، م. و ­حسینی­رامشه، ز (1384) ­فرازی بر SPSS14. نشر بیشه، تهران، ­330 ص.

افشین‌نیا، ف (1378) تحلیل کاربردی داده‌ها: راهنمای استفاده از نرم­افزار SPSS. انتشارات دانشگاه علوم پزشکی اصفهان، اصفهان،  263 ص.

امیری، م (a1384) ارتباط بین فروچاله­های دشت فامنین- کبودر آهنگ-‌ قهاوند  با سنگ کف منطقه. فصلنامه علوم زمین، سال پانزدهم، شماره 58، صفحه 134 تا 147.

امیری، م (b1384) نقش دی­اکسید‌کربن در ایجاد کارست درونی در منطقه فروچاله‌های همدان. چهارمین کنفرانس زمین‌شناسی مهندسی و محیط­زیست ایران، 2 الی 4 اسفند 1384. دانشگاه تربیت مدرس. تهران.

امیری، م.، اسدیان، ق. و امیری، ع (1388) علل گازدار شدن چاه‌های آب کشاورزی در دشت­های شمالی استان همدان و خوردگی تجهیزات آن‌ها. مجله پژوهش آب ایران. سال سوم، شماره 4، صفحه 51 تا 62.

 امیری، م.، رحیمیان، م. ح. و موسوی، س.ا (1397) بررسی روند تغییرات شوری و کیفیت آب چاه‌های کشاورزی گازدار در منطقه همه‌کسی- فامنین استان همدان. گزارش پروژه تحقیقاتی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان همدان، کد مصوب 93108 -23-63-4، نشر سازمان تحقیقات، آموزش و ترویج کشاورزی، شماره فروست انتشار 53939.

زرگر، م (1384) ­راهنمای جامع SPSS13 همراه با تمرین­های علمی ­و کاربردی. تهران. نشر بهینه. 556 ص.

حیدری، م.، خانلری، غ. و طالب­بیدختی، ع. ر (1382) بررسی انحلال­پذیری سنگ­های کربناته حاشیه نیروگاه همدان. سومین کنفرانس زمین­شناسی مهندسی و محیط­زیست ایران، 27 بهمن ماه 1382، دانشگاه بوعلی‌سینا، همدان، صفحه 189 تا 201.

غلامعلی­زاده آهنگر، ا (1386) کیفیت و ارزیابی کیفی آب آبیاری. نشر علوم کشاورزی. تهران، 114 صفحه.

 Amiri, M., Ahmadi Khalaji, A., Tahmasbi, Z., Zarei Sahamieh, R. and Zamanian, H (2016) Geothermobarometry of amphiboles in intermediate to basic rocks from the Almogholagh pluton in western Iran. Journal of Mineralogical and Petrological Sciences, 111: 337-350.

Amiri, M., Ahmadi Khalaji, A., Tahmasbi, Z., Zarei Sahamieh, R. and Zamanian, H (2017) Geochemistry, petrogenesis, and tectonic setting of the Almogholagh batholith in the Sanandaj Sirjan zone, western Iran. Journal of African Earth Sciences, 134: 113-133.

American Public Health Association (1995) Standard Methods for the Examination of Water and Wastewater, 19th Edition, Eaton, A.D., Clesceri, L.S., Greenberg, A.E. eds., Washington, DC.

Appelo, C. A. J. and Postma, D (1996) Geochemistry, groundwater and pollution, Balkema, Rotterdam, 536p.

Baalousha, H (2010) Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: A case study from Heretaunga Plains, New Zealand. Agricultural Water Management, 97: 240–246.

Babiker, I. S., Mohamed, M. A. A. and Hiyama, T (2007) Assessing groundwater quality using GIS. Water Resources. Management, 21: 699–715.

 Bower, C. A. and, Maasland, M (1963) Sodium hazard of Punjab ground waters, Symposium on water-logging and salinity in West Pakistan, p 49-61.

Bower, C.A., Wilcox, L.V., Aikens, G.W., Keyes, M.G (1965) An index of the tendency of CaCO3 to precipitate from irrigation waters. Soil Science Society of America, Proceedings, 29: 91-92.

Chadha, D. K (1999) A proposed new diagram for geochemical classification of natural water and interpretation of chemical data, Hydrogeology Journal, 7: 431– 439.

Chemiasoft, Online ebook (2017) Guide To Preparation of Stock Standard Solutions, Available online at: http://www. chemiasoft. com/chemd/TDS, Accessed 19, December 2017.

Collins, R. and Jenkins, A (1996) The Impact of Agricultural Land Use on Stream Chemistry in the Middle Hills of the Himalayas, Nepal, Journal of Hydrology, 185: 71-86.

Darnley, A. G., Björklund, A., Bølviken, B., Gustavsson, N., Koval, P. V., Plant, J. A., Steenfelt, A., Tauchid, M.,  Xuejing, X., Garrett, R. G. and Hall, G. E. M (1995) A global geochemical database for environmental and resource management: Final report of IGCP  Project 259, Earth Sciences, 19,  Paris, UNESCO Publishing, 122 p.

 Edmunds W. M., Carillo-Rivera, J. J. and Cardona, A (2002) Geochemical evolution of groundwater beneath Mexico City, Journal of Hydrology, 258: 1–24.

Gibbs, R. J (1970) Mechanisms controlling world water chemistry, Science, 17: 1088–1090.

Hamilton, D. and Zhang, H (1972) Solids Content of Wastewater and Manure, Oklahoma Cooperative Extension Service, BAE-1759.

Han, G. and Liu, C. Q (2004) Water geochemistry controlled by carbonate dissolution: study of the river waters draining karst dominated terrain Guizhou Province, China, Chemical Geology, 204: 1-21.

Lahermo, P. and Backman, B (1999) Nitrates in groundwater in Finland: the most endangering quality problem. hydrogeology and Land Use, Management, 329–333.

Langelier, W. F (1936) The analytical control of anticorrosion water treatment, Journal of the American Water Works Association, 28: 1500-1521.

Nag, S. K. and Ghosh, P (2013) Variation in Groundwater Levels and Water Quality in Chhatna Block, Bankura District,  West Bengal –A GIS Approach, Journal of the Geological Society of India, 81:  261-280.

Omo-Irabor, O. O., Olobaniyi, S.B., Oduyemi K. and Akunna, J (2008) Surface and groundwater quality assessment using multivariate analytical methods: A case study of the Western Niger Delta, Nigeria. Physics and Chemistry of the Earth, Parts A/B/C, 33: 666-673.

Piper, A. M (1944) A graphic procedure in the geochemical interpretation of water-analysis, Transactions. American Geophysical Union, 25: 914–923.

Piper, A. M (1955) A graphic procedure in the geochemical interpretation of water analysis. U.S. Geological Survey, Groundwater Note 12.

Rice, E. W., Baird, R. B., Eaton, A. D. and Clesceri, L.S )editors( (2012) Standard Methods for the Examination of Water and Wastewater, Publisher: American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF), 22nd Edition. 1496 p.

Sastri, J. C. V (1994) Groundwater chemical quality in river Basins Hydrogeochemical Facies and Hydrogeochemical Modeling, Lecture notes Refresher course conducted by School of Earth Sciences,  Bharathidasan University, Tiruchirapalli, Tamil Nadu, India.

Seibt, A., Hot, P. and Naumann, D (2003) Gas solubility in formation waters of the North German Bassin Implication for Geothermal energy recovery, Proceeding, Word Geothermal Congress 2003 Kyusha, Tohoku japan. May 28- Jan 10, 2000.

Shafiei, A. L., Haji hosseini, A., Ghasemi, A. and Majidi fard, M (2004) Geological map of Kabudare Ahang, with scale of 1: 100,000, Geological Survey of Iran, No: 5760.

Stamatis, G (2010) Ground water quality of the Ag. Paraskevi Tempi valley karstic springs application of a tracing test for research of the micro-bial pollution (KatoOlympos/NE Thessaly), Bulletin of the Geological Society of Greece, 43: 1868–1877.

Tsunogai, U., Ishibashi, J., walita, H., Gamo, T., Masuzama, T., Nakatsuka, T., Nojiri, Y. and Nakamura, T (1996) Fresh water seepage and pore water recycling on the seefloor. Sagami trough sabuction zone yapan, earth and planetary science letter, 138: 157-168.

World Health Organization (2004) Guidelines for drinking water quality, Geneva, 515 p.