برآورد مقاومت فشاری و کششی سنگ‏های کربناته با استفاده از آزمایش بار نقطه‎ای و همبستگی آن‌ها با ارزش ضربه‏ای سنگدانه (مطالعه موردی: سنگ‏های کربناته جاده کرمانشاه- ایلام)

نوع مقاله: مقاله پژوهشی

نویسندگان

گروه زمین شناسی، دانشگاه بوعلی سینا، همدان

چکیده

تعیین پارامترهای ژئوتکنیکی مورد نیاز در طراحی سازه‏های واقع در توده­سنگ یکی از مسائل عمده در زمین‏شناسی مهندسی، عمران و معدن است، مقاومت فشاری تک­محوری و مقاومت کششی از جمله این پارامترها هستند که به طور گسترده‏ای در طراحی سازه‏ها در توده سنگ استفاده می‏شوند. با توجه به این که آزمایش بار نقطه‏ای از یک سو هزینه و دشواری کمتری نسبت به آزمایش‏های مقاومت فشاری تک­محوری و کششی دارد و هم­چنین می‏تواند در محل پروژه و روی نمونه‏های با هندسه نامنظم نیز انجام شود، لذا می‏توان از آن به عنوان معیاری برای برآورد اولیه مهندسی در رابطه با مقاومت‏های کششی و فشاری سنگ‏ها استفاده نمود. در این پژوهش ارتباط میان این پارامترها با تحلیل‏های آماری بررسی شده و بهترین روابط تجربی برای آن­ها ارائه گردیده است. هم­چنین به علت گستردگی سنگ‏های کربناته در کشور و کاربرد آن­ها در پروژه‏های عمرانی مختلف، ارتباط مقاومت‏های فشاری تک­محوری، کششی و بار نقطه‏ای با ارزش ضربه‏ای سنگدانه که یکی از شاخص‏های بررسی کیفیت مصالح سنگی می‏باشد نیز مورد بررسی قرار گرفته است. در رگرسیون تک متغیره بالاترین ضریب تعیین به مقدار 897/0، مربوط به رابطه بین مقاومت فشاری تک­محوری با شاخص بار نقطه‏ای در حالت خشک و کمترین ضریب تعیین به مقدار 653/0، مربوط به رابطه بین مقاومت کششی برزیلی با ارزش ضربه‏ای سنگدانه در حالت خشک است، هم­چنین استفاده از رگرسیون چند متغیره منجر به تخمین بسیار بهتری از مقاومت فشاری تک­محوری شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of compressive strength and tensile strength of carbonate rocks using point load index test and their correlation with aggregate impact value (case study: Kermanshah-Ilam Road carbonate rocks)

نویسندگان [English]

  • Mohammad Hosein Ghobadi
  • Hasan Mohseni
  • Sajad Ahmadi
Dept., of Geology, Bu-Ali Sina University, Hamedan
چکیده [English]

Determination of geotechnical parameters required for design of rock mass structures are one of the major issues in the engineering geology, civil and mining. Uniaxial compressive strength and tensile strength are among of these parameters which are widely used in the design of structures in rock mass. Among them, the point load index test not only has less cost and difficulty than uniaxial compressive strength and tensile strength tests; but also can be carried out at the site of the project and on samples with irregular geometry; therefore, it can be used as a criterion for the initial engineering judgment regarding tensile and compressive strength of rocks. In the research, the relationship between these parameters is analyzed with statistical analysis and the best experimental relations are presented. Moreover, due to the vast spatial occurrences of carbonate rocks in the country and their application in various development projects, the relationship between uniaxial compressive strengths, tensile strength and point load strength with aggregate impact value is also studied, which is one of the indicators for assessing the quality of materials stone. In the bivariate equations, the highest coefficient of determination is 0.897, that related to the relationship between the uniaxial compressive strength and the point load index in dry condition and the lowest coefficient of determination is 0.653, that relates to the relationship between the Brazilian tensile strength and the aggregate impact value in dry condition, also the use of multivariate regression leads to a much better estimate of uniaxial compressive strength.

کلیدواژه‌ها [English]

  • Uniaxial compressive strength
  • Brazilian tensile strength
  • point load index
  • Aggregate impact value
  • Carbonate rock

امیری، م.، کرمی، ش (1394) کنترل کیفیت و تحلیل آماری با Minitab، انتشارات کیان، چاپ دوم، 600 ص.

خانلری، غ. ر (1394) اصول مکانیک سنگ، انتشارات دانشگاه بوعلی­سینا همدان، چاپ دوم، 486 ص.

درویش­زاده، ع (1389) زمین­شناسی ایران، انتشارات امیر کبیر تهران، چاپ چهارم، 434 ص.

فهیمی‏فر، ا.، و سروش، ح (1380) آزمایش‏های مکانیک سنگ مبانی نظری و استانداردها جلد اول (آزمون‏های آزمایشگاهی)، شرکت سهامی آزمایشگاه فنی و مکانیک خاک، دانشگاه امیر کبیر، چاپ اول، 740 ص.

قبادی، م. ح (1388) زمین­شناسی مهندسی کارست، انتشارات دانشگاه بوعلی­سینا همدان، چاپ دوم، 304 ص.

قبادی، م. ح (1390) مبانی زمین‏شناسی مهندسی، انتشارات دانشگاه بوعلی­سینا همدان، چاپ سوم، 408 ص.

محمدی، س. د.، مهدی­آبادی، ن.، ساعدی، ب (1394) بررسی ویژگی‏های فیزیکی و مکانیکی رادیولاریت‏های چرتی جنوب شهر کرمانشاه، مجله انجمن زمین‏شناسی مهندسی ایران، شماره 3 و 4، ص 16-1.

معماریان، ح (1395) زمین‏شناسی برای مهندسین، انتشارات دانشگاه تهران، چاپ ششم، 768 ص.

نقشه زمین­شناسی پلنگه (1974)، 1:100000، شرکت ملی نفت ایران.

نقشه زمین­شناسی کرمانشاه (1999)، 1:100000، سازمان زمین­شناسی و اکتشافات معدنی کشور

نقشه زمین­شناسی ایلام (1999)، 1:100000، سـازمان زمین­شناسی و اکتشافات معدنی کشور.

وفائیان، م (1391) خواص مهندسی سنگ‎ها (تئوری‎ها و کاربردهای اجرایی)، انتشارات ارکان دانش، چاپ چهارم، 446 ص.

Ahmad, M., Ansari, M. K., Sharma L. K., Singh, R., & Singh, T. N (2017) Correlation between Strength and Durability Indices of Rocks- Soft Computing Approach, Procedia Engineering, 191: 458 – 466.

ASTM (2005) Standard Test Method for Laboratory Determination of Pulse Velocities and Ultrasonic Elastic Constants of Rock.

British Standards Institution (1975) Methods for determination of mechanical properties, B.S.812: Part 3, London.

Cargil, J., & Shakoor, A (1990) Evaluation of empirical method for measuring the uniaxial compressive strength, International Journal of Rock Mechanics and Mining sciences, 27: 495-503.

Deer, D., & Miller, R (1996) Engineering classification and index properties for intact rocks, Tech Rep no. AFNL-TR. Air force weapons lab. WrightPatterson Air Force Base, 30.

Dickson, J .A. D )1965( A modified staining technique for carbonate in thin section, Nature, V. 205, 587 p.

Finol, J., Guo, Y. K., & Jing, X. D (2001) A rule based fuzzy model for the prediction of petrophysical rock parameters, Journal of Petroleum Science and Engineering, 29: 97–113.

Gokceoglu, C (2002) A fuzzy triangular chart to predict the uniaxial compressive strength of Ankara agglomerates from their petrographic composition, Engineering Geology, 66: 39–51.

Heidari, M., Khanlari, G., Torabi-kaveh, M., & Kargarian, S (2012) Predicting the uniaxial compressive and tensile strength of gypsum rock by point load testing, Rock Mechanics and Rock Engineering, 45 (2): 256-273.

Hoek, E., & Bray, J. W (2005) Rock Slope Engineering, 4th edition 2005, Spon press, 431 p.

ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006, In: Ulusay, R., & Hudson, J, A., (Eds.), Suggested methods prepared by the commission on testing methods, International Society for Rock Mechanics, ISRM Turkish National Group, Ankara, Turkey, 628 p.

Kahraman, S (2001) The effect of rock classes on the relation between uniaxial compressive strength and point load index, Bulletin of Engineering Geology and the Environment, 68 (3): 345-353.

Kahraman, S., & Fener, M (2007) Predicting the Los Angeles abrasion loss of rock aggregates from the uniaxial compressive strength, Mater. Lett, 61:  4861-4865.

Raeisi, E., & Kowsar, N (1997) Development of Shahpour Cave, southern Iran, Cave and Karst Science, 24 (1): 27-34.     

Rajabi, A., Hosseini, A., & Heidari, A (2017) The New Empirical Formula to Estimate the Uniaxial Compressive Strength of Limestone; North of Saveh a Case Study, Journal of Engineering Geology, 11 (3) 159-180.

Read, J. R. L., Thornten, P. N., & Regan, W. N (1980) A rational approach to the point load test, Proc. Third Australia-New Zealand Conferance on Geomechanics.

Sabatakakis, N., Koukis, G., Tsiambaos, G., & Papanakil, S (2009) Consolidation on strength of intact sedimentary rocks, Engineering Geology, 72: 261-273.

Singh, T. N., Kainthola, A., & Venkatesh, A (2012) Correlation between point load index and uniaxial compressive strength for different rock types, Rock Mechanics and Rock Engineering, 45: 259-264.

Stephens, M. A (1974) EDF Statistics for Goodness of Fit and Some Comparisons, Journal of the American Statistical Association, 69: 730-737.

Tondon, S., & Gupta, V (2014) Estimation of strength from Schmidt hammer rebound, point load index and compressional wave velocity, Bulletin of Engineering Geology and the Environment.

Tucker, M. E (2001) Sedimentary petrology: an introduction to the origin of sedimentary rocks, Blackwell scince, 262 p.