تحلیل پویایی تکتونیکی گسل مروارید در پهنه گسلی جوان اصلی زاگرس با استفاده از داده های دورسنجی و تحلیل فرکتالی

نوع مقاله: مقاله پژوهشی

نویسندگان

گروه زمین‌شناسی، دانشکده علوم پایه، دانشگاه بوعلی‌سینا، همدان

چکیده

هدف از این مطالعه بررسی پویایی تکتونیکیشکستگی­ها و خطواره­های مرتبط با گسل مروارید، قطعه میانی پهنه گسلی جوان اصلی زاگرس (MRF) است.  MRFیک گسل راستالغز راستگرد با روند شمال­باختری-جنوب­خاوری می­باشد که از چندین قطعه گسلی تشکیل شده است. گسل مروارید یکی از قطعات MRF می­باشد که با طول حدوداً 30 کیلومتری در قسمت میانی و در ادامه گسل صحنه قرار گرفته است. در این مطالعه با استفاده از تکنیک­های دورسنجی و تحلیل­های فرکتالی، گسل­ها و خطواره­های مرتبط با پهنه گسلی مروارید مورد بررسی قرار گرفته که روش مورد استفاده در این مطالعه، استخراج نیمه اتوماتیک خطواره­ها برپایه الگوریتـم STA از تصاویر ماهواره­ای لندست و مدل­های سایه ارتفاعی بوده است. با استفاده از تحلیل­های فرکتالی، خطواره­ها و گسل­های بدست آمده مورد تجزیه و تحلیل قرار گرفته که افزایش بعد فرکتالی نشان­دهنده تراکم شکستگی­ها در اطراف پهنه گسلی MRF می­باشد و این تراکم در یک روند شمال­باختری - جنوب­خاوری و به موازات گسل است. بعد فرکتالی گسل­ها از شمال باختر به جنوب خاور به تدریج از 626/1 به 847/1 تغییر می­یابد و این روند افزایشی بعد فرکتال، در مورد خطواره­ها نیز قابل مشاهده است که از 811/1 در شمال باختر به 941/1 در جنوب خاور افزایش می یابد. در واقع عامل موثر در افزایش بعد فرکتالی در منطقه مورد مطالعه، شکستگی­های مرتبط با پهنه گسلی جوان اصلی زاگرس می­باشد که با دورشدن از این پهنه تراکم گسل­ها کاهش می­یابد.

کلیدواژه‌ها


عنوان مقاله [English]

The analysis of the dynamics tectonic Morvarid Fault at Main recent Fault using remote sensing data and fractal analysis

نویسندگان [English]

  • reza alipoor
  • A. H Sadr
  • P Amini
چکیده [English]

The aim of this study is assessment the dynamics tectonic Linements and fractures related is to the Morvarid Fault, middle segment of the Main recent Fault (MRF).The MRF is a dextral strike-slip fault the with northwest-southeast trend, composed of several fault segments. The Morvarid Fault is one of the MRF segments with a .bout 30 kilometers length is located in middle part and continuation of the Sahneh fault. In this study, using remote sensing techniques and fractal analyzes, faults and Linements associated with the fault zone Morvarid examined the method used in this study, semi-automatic extraction Linements based on STA algorithm of images Landsat satellite and is shaded models. Using fractal analyzes, lineaments and faults were obtained analyzes the fractal dimension reflects the increasing the density of fractures around the fault zone MRF and the density in a process northwest southeast and parallel to the fault. Fractal dimension faults from northwest to southeast is gradually changed from 1.626 to 1.847 and this increase of fractal dimension, is also visible in the Linements from 1.811 in the northwest to 1.941 southeast will rise. In fact, factor in the rise fractal dimension in the study area, related fractures Main recent Fault, which away from this zone the faults density decreases.

کلیدواژه‌ها [English]

  • Main Recent Fault
  • Morvarid Fault
  • remote sensing techniques
  • fractal

[1] حسامی، خ.، جمالی، ف.، طبسی، ه (1382) نقشه گسل‌های فعال ایران، پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله.

[2] علی‌پور، ر.، پورکرمانی، م.، زارع، م.، اسپندار، ر (1389) استخراج اتوماتیک خطواره‌های مرتبط با زون گسلی جوان اصلی زاگرس در جنوب لرستان و مقایسه آن با برداشت‌های صحرایی، مجله علوم پایه دانشگاه آزاد اسلامی(JSIAU) ، جلد 20، شماره 77، ص 184-173.

[3] Agard, P., Omrani, J., Jolivet, L., Mouthereau, F (2005) Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences. 94, 401– 419.

[4] Alavi, M (1980) Tectonostratigraphic evolution of the Zagrosides of Iran. Geology. 8, 144–149.

[5] Alavi, M (1994) Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics. 229, 211-238.

[6] Allen, M.B., Ghassemi, M.R., Shahrabi, M., Qorashi, M (2003) Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran. Journal of Structural Geology 25, 659–672.

[7] Allen, M.B., Jackson, J., Walker, R (2004) Late Cenozoic reorganization of the Arabia– Eurasia collision and comparison of the short-term and long-term deformation rates. Tectonics. 23, TC2008, doi: 10.1029/2003TC001530.

[8] Alipoor, R., Poorkermani, M., Zare, M., El Hamdouni, R (2012) Active tectonic assessment around Rudbar Lorestan dam site, High Zagros Belt (SW of Iran). Geomorphology, 128, 1–14.

[9] Axen, G.J., Lam, P.J., Grove, M., Stockli, D.F., Hassanzadeh, J (2001) Exhumation of the west‐central Alborz Mountains, Iran, Caspian subsidence, and collision‐related tectonics. Geology 29, 559–562.

[10] Berberian, M., King, G.C.P (1981) Toward a paleogeography and tectonic evolution of Iran, Canad. J. Earth Sci. 18, 210-265.

[11] Berberian, M (1995) Master blind thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics. 241, 193–224.

[12] Blanc, E.J.P., Allen, M.B., Inger, S., Hassani H (2003) Structural styles in the Zagros Simple Folded Zone. Iran. Journal of the Geological Society of London. 160, 401–412.

[13] Corgne, S., Magagi, R., Yergeau, M., Sylla, D (2010) An integrated approach to hydro-geological lineament mapping of a semi-arid region of West Africa using Radarsat-1 and GIS. Remote Sensing of Environment, 114, p. 1863–1875.

[14] Dercourt, J., Ricou, L.E., Vrielynck, B (1993) Atlas Tethys Palaeo environmental maps, 14 maps, 1 pl. Paris: Gauthier-Villars.

[15] Dercourt, J., Zonenshain, L.P., Ricou, L.E., Kazmin, V.G., Le pichon, X., Knipper, A.L., Grandjacquet, C., Sbortshikov, I.M., Geyssant, J., Lepvrier, C., Pechersky, D.H., Boulin, J., Sibuet, J.C., Savostin, L.A., Sorokhtin, O., Westphal, M., Bazhenov, M.L., Lauer, J.P., BijuDuval, B (1986) Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the LIAS. Tectonophysics. 123, 241–315.

[16] Dewey, J.F., Pitman III, W.C., Ryan, W.B.F., Bonini, J (1973) Plate tectonics and the evolution of the Alpine System. In: Geological Society of America Bulletin. 84, 3137–3180.

[17] Falcon, N.L (1974) Southern Iran: Zagros Mountains. Mesozoic–Cenozoic Orogenic Belts, Data for Orogenic Studies: Geol. Soc. Spec. Publ. London, 4, pp. 199–211.

[18] Hafkenscheid, E., Wortel, M.J.R., Spakman, W (2006) Subduction history of the Tethyan derived seismic tomography and tectonic reconstruction. Journal of Geophysical Research 111, B08401, doi:10.1029/2005JB003791, 26 p.

[19] Jackson, J.A., McKenzie, D.P (1984) Active tectonics of Alpine–Himalayan belt between western Turkey and Pakistan. Geophysical. Journal of the Royal Astronomical Society. 77, 185–264.

[20] Koop, W.J., Stoneley, R (1982) Subsidence history of the Middle East Zagros Basin, Permian to Recent. Philosophical Transactions of the Royal Society of London. Series A. 305, 149–168.

[21] Kim, Y.S., Peacock, D.C.P., Sanderson, D.J (2002) Fault damage zones. Journal of Structural Geology. 26, 503–517

[22] Koike, K., Nagano, S., Ohmi, M (1995) Lineament analysis of satellite image using a Segment Tracing Algorithm [STA]. computer and geosciences. 21, 1091-1104.

[23] Koike, K., Nagano, S., Kawaba, K (1998) Constraction and analysis of interpreted fracture plans through combination of satellite image derived lineaments and digital elevation model date. Computer and geosciences. 24, 573-583.

[24] Masoud, A., Koike, K (2006) Tectonic architecture through Landsat-7 ETM⁺/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt. African Earth Sciences. 45, 467-477.

[25] McClay, K.R., Whitehouse, P.S., Dooley, M., Richards, M (2004) 3D evolution of fold and thrust belts formed by oblique convergence. Marine and Petroleum Geology. 21, 857–877

[26] Mohajjel, M., Fergusson, C.L (2000) Dextral transpression in Late Cretaceous continental collision, Sanandaj-  Sirjan zone, western Iran. Journal of Structural Geology 22, 1125-1139.

[27] Molinaro, M., Leturmy, P., Guezou, J.C., Frizon de Lamotte, D (2005) The structure and kinematics of the southeastern Zagros fold-thrust belt; Iran: from thin-skinned to thick-skinned tectonics. Tectonics. 24, TC3007, doi: 10.1029/2004TC001633.

[28] Navabpour, P., Angelier, J., Barrier, E (2007) Cenozoic post‐collisional brittle tectonic history and stress reorientation in the High Zagros Belt [Iran, Fars Province]. Tectonophysics 432, 101–131.

[29] Regard, V., Bollier, O., Thomas, J.C., Abbasi, M.R., Mercier, J., Shabanian, E., Feghhi, K., Soleymani, S (2004) Accommodation of Arabia–Eurasia convergence in the Zagros-Makran transfer zone, SE Iran: a transition between collision and Subduction through a young deformation system. In: Tectonics. 23, doi: 10.1029/2003TC001599 TC4007.

[30] Sarkarinejad, K (2007) Quantitative finite strain and kinematic flow analyses along the Zagros transpression zone. Iran Tectonophysics 442, 49e65.

[31] Sarkarinejad, K., Azizi, A (2008) Slip partitioning and inclined dextral transpression along the Zagros Thrust System, Iran. Journal of Structural Geology. 30, 116–136.

[32] Sarkarinejad, K., Faghih, A., Grasemann, B (2008) Transpressional deformations within the Sanandaj – Sirjan metamorphic belt (Zagros mountains, Iran). Journal of Structural Geology. 30, 818–826.

[33] Sarkarinejad, K., Partabian, A., Faghih, A., Kusky, T.M (2012) Usage of strain and vorticity analyses to interpret large-scale fold mechanisms along the Sanandaj - Sirjan metamorphic belt, SW Iran. Geological Journal 47, 99-110.

[34] Sengör, A.M.C., Altiner, D., Cin, A., Ustaömer, T., Hsü, K.J (1988) The origin and assembly of the Tethyside orogenic collage at the expense of Gondwana land. In Gondwana and Tethys (eds M. G. Audley-Charles & A. Hallam). Geological Society of London, Special Publication no. 37, 119-181.

[35] Sepehr, M., Cosgrove, J.W (2005) Role of the Kazerun fault zone in the formation and deformation of the Zagros Fold-Thrust Belt, Iran. Tectonics 24, TC5005, doi: 10.1029/2004TC001725.

[36] Stampfli, G.M., Borel, G. D (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters. 196, 17–33.

[37] Stocklin, J (1968) Structural history and tectonics of Iran. A review. American Association of Petroleum Geologists Bulletin. 52, 1229–1258.

[38] Stöcklin, J (1977) Structural correlation of the Alpine ranges between Iran and Central Asia. Mém. Soc. géol. France. 8: 333-353.

[39] Takin, M (1972) Iranian Geology and Continental Drift in the Middle East. Nature. 235, 147–50.

[40] Talebian, M., Jackson, J (2002) Offset on the main recent fault of NW Iran and implications on the late Cenozoic tectonics of the Arabia–Eurasia collision zone. Geophysical Journal International. 150, 422–439.

[41] Tatar, M., Hatzfeld, D., Ghafory-Ashtiyani, M (2004) Tectonics of the Central Zagros (Iran) deduced from microearthquake seismicity. Geophysical Journal International. 156, 255–266.

[42] Tchalenko, J.S (1970) similarities between shear zones of different magnitudes. Bull. Ceol. Am. 81, 1625-1640

[43] Tchalenko, J.S., Braud, J (1974) Seismicity and structure of the Zagros [Iran] the Main Recent Fault between 33 and 35 N. Philosophical Transactions of the Royal Society of London. 277, 1–25.

[44] Turcotte. D.L (1997) Fractals and Chaos in Geology and Geophysic. Cambridge Univ. Press.

[45] Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M., Vigny, C., Masson, F., Nankali, HMartinod, J., Ashtiani, A., Bayer, R., Tavakoli, F., Chéry, J (2004) Present‐day crustal deformation and plate kinematics in the Middle East constrained by GPS measurementsin Iran and northern Oman. Geophysical Journal International. 157, 381–398.

[46] Wellman, H.W (1966) Active wrench faults of Iran, Afghanistan and Pakistan. Geologische Rundschau. 55, 716–735.

[47] Ziegler, P.A., Stampfli, G.M (2001) Late Paleozoic-Early Mesozoic plate boundary reorganization: collapse of the Variscan orogen and opening of Neotethys. In: Cassinis, R. (Ed.), the Continental Permian of the Southern Alps and Sardinia (Italy) Regional Reports and General Correlations, Ed. 25. Annali Museo Civico Science Naturali, Brescia. 17–34.