مدل سازی ژئومتالورژی- رویکرد نوین در تلفیق اطلاعات زمین‌شناسی و متالورژی به‌منظور بهینه‌سازی ارزیابی ذخیره معدنی

نوع مقاله: مقاله پژوهشی

نویسنده

دانشکده مهندسی معدن و متالورژی، دانشگاه یزد

چکیده

در پروژه­های معدنی، جنبه­های طراحی شامل مدلسازی زمین­شناسی ذخیره معدنی، شیوه استخراج، روش فرآوری و در نهایت بازیابی و نرخ تولید محصول (کنسانتره) است؛ کلیه این موارد بر اقتصاد پروژه و ارزش کلی معدن تاثیر گذار هستند. برای طراحی مدل ذخیره معدنی، به­طور معمول از پارامترهای عیار، تناژ و میزان تناژ بالاتر از عیارحد به­عنوان ملاک اقتصادی استفاده می­شود که به­تنهایی نمی­تواند جوابگو باشد. ژئومتالورژی با ترکیب اطلاعات زمین­شناسی و متالورژی، امکان تولید یک مدل پیش­بینی کننده فضایی را برای خطوط فرآوری معدنی فراهم می­کند. این زمینه نوظهور، با هدف تلفیق پارامترهایی از جمله سختی، قابلیت خردایش، بازیابی، درجه آزادی و بافت کانی­ها، عیار عناصر و غیره تعریف شده است. مدلسازی ژئومتالورژیکی نیازمند توسعه یک ماتریس سه­بعدی به صورت یک الگوی  X-Y-Z  که دو محور آن نشانگر عوامل زمین‌شناسی (از جمله نوع سنگ‌شناسی و دگرسانی) و محور سوم نشانگر پارامترهای بحرانی (از جمله سختی، بافت، درجه آزادی کانه، توزیع عناصر مزاحم و نظایر آن) است که در پهنه­بندی کانسار از نظر خواص متالورژیکی حائز اهمیت است. به­منظور اجرای مدلسازی متالورژی، توزیع فضایی پارامترهای خروجی معدنکاری، به صورت یک تابع (رابطه) غیرخطی از پارامترهای ورودی و با توجه به رابطه بین مقیاس نمونه­برداری در حالت­های کوچک مقیاس (آزمایشگاهی)، متوسط مقیاس (نیمه‌صنعتی) و بزرگ مقیاس (صنعتی)، تعیین شده است. الگوریتم پیشنهادی، بیانگر برتری به­کارگیری رویکرد «زنجیره ارزش» در مدلسازی ژئومتالورژی در مقایسه با رویکرد رایج منطق مرحله­ای در برنامه­ریزی معدنی است.

کلیدواژه‌ها


عنوان مقاله [English]

Geometallurgical modeling – A novel approach of combining geological and metallurgical information to optimize resource evaluation

نویسنده [English]

  • Amin Hossein Morshedy
چکیده [English]

Design aspects of the mining projects, including resource geological modelling, mining methodology, mineral processing and production rates have a significant impact on the project economics and overall value. To generate a resource model, typically tonnes, grade and the tonnes/grade above the cut-off are applied as the economic criterion, which are not adequate alone. Geometallurgy combines geological and metallurgical information to provide spatially-based predictive model for mineral processing plants. This novel field has been introduced to integrate the various parameters such as hardness, grindability, recovery, liberation, concentrations, mineral texture, etc. Geometallurgical modeling requires to develop matrix an x-y-z plot where two of the axes represent geological factors (e.g., rock type and alteration) and the third axis represents critical parameters (hardness, texture, liberation degree of ore, distribution of penalty elements, etc.) that plays an important role for deposit domaining. The spatial distribution of response parameters is determined based on the primary parameters, which must consider nonlinear relationships and conversion scales between the experimental, pilot or industrial modes. The proposed algorithm represents a “value chain” approach in geometallurgical model compared to the common concept of mine planning evaluations.

کلیدواژه‌ها [English]

  • Geometallurgy
  • Geological model
  • Spatial variability
  • Recovery rate
  • Uncertainity
[1]  Chibaya, Ashley. “Geometallurgical analysis-Implications of operating flexibility (A case for Geometallurgy for Orapa A/K1 deposit). PhD Dissertation, University of the Witwatersrand, 126 pp.

[2]  Coward, S. Dunham, S. Vann, J. Stewart, M (2009) The Primary-Response Framework for Geometallurgical Variables. Seventh International Mining Geology Conference, Perth, WA, 109-113.

[3]  David, D (2007) The Importance of Geometallurgical Analysis in Plant Study, Design and Operational Phases. Ninth Mill Operators’ Conference, Fremantle, WA: 241-248.

[4]  Dunham, S., and J. Vann (2007) Geometallurgy, geostatistics and project value—does your block model tell you what you need to know. Project evaluation conference, Melbourne, Victoria, 19-20.

[5]  Keeney, Luke (2010) The Development of a Novel Method for Integrating Geometallurgical Mapping and Orebody Modelling. PhD Dissertation, The University of Queensland, 214pp.‏

[6]  Lamberg, P (2011) Particles – the bridge between geology and metallurgy. In: Conference in Mineral Engineering, Proceedings, Luleå, Sweden, 8–9 February, pp. 1–16.

[7]  Lund, C., Lamberg, P (2014) Geometallurgy–A tool for better resource efficiency. European Geologist, 37: 39-43.

[8]  Lund, C., Lamberg, P., Lindberg, T (2015) Development of a geometallurgical framework to quantify mineral textures for process prediction. Minerals Engineering, 82: 61-77.

[9]  Myers, Jeffrey C (1999)Geostatistical error management: quantifying uncertainty for environmental sampling and mapping”, Van Nostrand Reinhold, New York, 573 pp.‏

[10]   Williams, S., Richardson. J (2004) Geometallurgical Mapping: A new approach that reduces technical risk. Proceedings of the 36th Annual Meeting of the Canadian Mineral Processors, Ottawa, Canada, Vol. 2022, p. 241268.‏