کاربرد مُدل‌های فرکتال عیار-تعداد و عیار-مساحت در جداسازی آنومالی‌های ژئوشیمیایی در کانسار طلا زرشوران، شمال غرب ایران

نوع مقاله : مقاله پژوهشی

نویسنده

گروه زمین‌شناسی، دانشگاه آزاد اسلامی واحد اهواز، اهواز، ایران

چکیده

در پژوهش حاضر مدل های فرکتالی عیار- تعداد و عیار- مساحت به منظور جدایش آنومالی‌های ژئوشیمیایی عناصر طلا، آرسنیک، مس و آنتیموان در کانسار تیپ کارلین زرشوران، شمال غرب ایران مورد استفاده قرار گرفتند. نمودارهای لگاریتمی همراه با خط برازش مستقیم نشان دهنده رابطه عیار-تعداد و عیار- مساحت عناصر طلا، آنتیموان، آرسنیک و مس می‌باشند. مقادیر آستانه‌های بدست آمده از هر دو روش تقریباً مشابه می‌باشند. بر اساس مقدار آستانه‌های بدست آمده، توزیع غلظت عناصر را در هر دو روش مورد بررسی را می‌توان به سه گروه تقسیم بندی نمود، که هر کدام دارای انطباق نسبی با تیپ سنگی خاصی از قبیل: سنگ‌های مافیک، سرپانتین شیست (در تاقدیس ایمان خان)، آهک چالداغ و واحد شیل زرشوران (گوژ سیاه) می‌باشند. شواهد ساختاری متنوع و آلتراسیون‌های همراه با آنها نشان دهنده این موضوع است که ساختارهای زمین شناسی نقش بسیار مهمی در جدایش و تفکیک آنومالی‌های ژئوشیمیایی و توزیع عناصر در خاک‌ها داشته‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Application of number-size and concentration -area fractal Models to Identify Geochemical Anomalies in Zarshuran Au Deposit, NW Iran

نویسنده [English]

  • Ahad Nazarpour
چکیده [English]

In this study identification and separation of geochemical anomalies using the number-size (N-S) and concentration-area (C-A) methods was conducted at the Zarshuran Carlin-type Au deposit, NW Iran. Log-log elemental plots fitted with straight lines show number-size (N-S) and concentration-area (C-A) relationships of Au, As, Sb and Cu. The thresholds obtained from the two methods are similar. Element concentrations can be divided into three segments that correlate with a particular rock type including mafic rocks, serpentine schist (within the Iman Khan Anticline), Ghaldagh limestone and Zarshuran shale (black gouge) units. Various structural features and corresponding alteration show that geologic structures play an important role in the discrimination of geochemical anomalies and element distribution in soils. …… … … … … … … … … .. … …. .. .. .. … … … … … .. … .. .. .. .. .. .. .. .. .. .. .. .. … … … … … .. .. .. .. … … … …

کلیدواژه‌ها [English]

  • Geochemistry
  • Frcatal
  • Number-Size
  • Concentration-Area
  • Zarshuran
منابع
[1] اجاقی، ب (1374) زمین­شناسی کانسار طلای زرشوران، مهندسین مشاور کاوشگران، گزارش داخلی، 165 صفحه.
[2] باباخانی،ع. ر.، قلمقاش، ج (1380) گزارش زمین­شناسی 1:100000ورقه 1:100000چهارگوش تخت سلیمان، انتشارات سازمان زمین­شتاسی و اکتشافات معدنی کشور، تهران، 110 صفحه.
[3]   علــوی­نائیـنی، م.، و عمـیدی، م (1361) گــزارش زمین­شناسی ورقه 1:250000 چهارگوش تکاب-صائین قلعه، انتشارات سازمان زمین­شناسی و اکتشافات معدنی کشور، تهران، 100 صفحه.
[4]       قربانی، م (1379) ماگماتیسم و متالوژنی منطقه تکاب، پایان­نامه دکتری، دانشگاه شهید بهشتی تهران، 400 صفحه.
[5]     Afzal, P. Fadakar Alghalandis, Y. Khakzadو A. Moarefvand,P, Rashidnejad Omran, N )2011( Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. Journal of  Geochemical Exploration, Vol.(108):220–232.
[6]     Agterberg, F.P (1995) Multifractal modeling of the sizes and grades of giant and supergiant deposits. International Geological  Review,37:1–8.
[7]     Agterberg, F.P. Cheng, Q.& Wright, D.F (1993) Fractal modeling of mineral deposits. In: Elbrond J, Tang, X (eds) 24th APCOM symposium proceeding, Montreal, Canada, pp. 43–53.
[8]     Carranza, E.J.M (2008) Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. Handbook of Exploration and Environmental Geochemistry, Vol.(11). Amsterdam: Elsevier.
[9]     Cheng, Q., Agterberg, F.P., Ballantyne, S.B (1994) The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51:109–130.
[10] Cheng, Q. & Agterberg, F.P (1996) Multifractal modeling and spatial statistics. Mathematical Geology,28:1–16.
[11] Cheng, Q. Ping, Q. &Kenny, F )1997( Statistical and fractal analysis of surface stream patterns in the Oak Ridges Moraine, Ontario, Canada. International Association of Mathematica lst Geology Meeting, Barcelona, Spain.
[12] Deng,  J. Wang, Q. Yang, L. Wang, Y. Gong, Q.& Liu, H (2010) Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China.Journal of Geochemical Exploration,105: 95–105.
[13] Ford, A. & Blenkinsop, T.C (2008) Evaluation geological complexity and complexity gradients as control on copper mineralization, Mt Isa Inlier. Australian Journalof Earth Science,55:13-23.
[14] Gałuszka A (2007) A review of geochemical background concepts and an example using data from Poland.
[15] Jian, B. Porwal, A. Hart,  C. Ford,  A. &Yu, L )2010( Mapping geochemical singularity using multifractal analysis: application to anomaly definition on strean sediments data from Funin Sheet, Yunnan, China. Journal of Geochemical Exploration, 45:1-11.
[16] Mandelbrot,  B (1983) The fractal geometry. Freeman and Company, New York. 468 pp .
[17] Mehrabi, B. Yardley, B. & Cann, J(1999) Sediment-hosted disseminated gold mineralisation at Zarshuran, NW Iran. Mineralium Deposita, 34, 673-696.
[18] Miesch, A (1981) Estimation of the geochemical threshold and its statistical significance.Journal of Geochemical Exploration, 16:49–76.
[19] Nazarpour, A. Omran, N.R. Paydar, G.R. Sadeghi, B. Matroud, F. & Nejad, A.M (2015) Application of classical statistics, logratio transformation and multifractal approaches to delineate geochemical anomalies in the Zarshuran gold district, NW Iran. Chemie der Erde-Geochemistry, 75, 117-132.
[20] Shapiro, S.S. & Wilk, M.B (1965) An analysis of variance test for normality (complete samples). Biomet, 52: 591–611.
[21] Yuan, F. Li, X.H. Bai, X.Y. Jowitt, S. Zhang, M. Jia, C.& Zhou, T (2010) Comparison of normalization methods for non-normal distributed soil geochemical data: a case study from the Tonglingmetallogenic district, Yangtze belt, Anhui Province, China. Journal of Geochemical Exploration,45: 45-51.