Alber, M., Kahraman, S (2009) Predicting the uniaxial compressive strength and elastic modulus of a fault breccia from texture coefficient. Rock Mechanics and Rock Engineering, 42: 117–127. doi:10.1007/s00603-008-0167-x.
Aligholi, S., Lashkaripour, G. R., Ghafoori, M., Azali, S. T (2017) Evaluating the relationships between NTNU/SINTEF drillability indices with index properties and petrographic data of hard igneous rocks. Rock Mechanics and Rock Engineering, 50: 2929–2953.
Anon, O (1979) Classification of rocks and soils for engineering geological mapping. Part 1: rock and soil materials. Bulletin of Engineering Geology and the Environment, 19(1): 364-437. doi: https://doi.org/10.1007/BF02600503.
ASTM (2005) Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate. ASTM C88-05. ASTM International West Conshohocken, 4 p.
ASTM (2008) C131/C131M: Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. Annual Book of American Society for Testing materials ASTM Standards, West Conshohocken, 5 p.
Atici, U., Comakli, R (2019) Evaluation of the physico-mechanical properties of plutonic rocks based on texture coefficient. Journal of the Southern African Institute of Mining and Metallurgy, 119(1): 63-69.
Ersoy, H., and Acar, S (2016) Influences of petrographic and textural properties on the strength of very strong granitic rocks. Environmental Earth Sciences, 75: 1461–1476. doi: 10.1007/s12665-016-6277-y.
Fereidooni, D (2022) Importance of the mineralogical and textural characteristics in the mechanical properties of rocks. Arabian Journal of Geosciences, 15(7): 637.
Fereidooni, D., and Sousa, L (2022) Predicting the Engineering Properties of Rocks from Textural Characteristics Using Some Soft Computing Approaches. Material, 15: 7922. doi.org/10.3390/ma15227922.
Franklin, J. A (1985) Suggested method for determining point load strength. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 22(2): 51-60. doi: 10.1016/0148-9062(85)92327-7.
Ghobadi, M. H, Amiri, M., Aliani, F (2011) The study of engineering geological properties of peridotites in Harsin, Kermanshah province (A case study). Journal of Engineering Geology, 14(1): 105-132. doi: 10.22084/nfag.2019.19208.1375 (in Persian).
Ghobadi, M. H., Ahmadi, L., Miri, M. M., Jafari, S. R (2019) The relationship between petrology and physical and mechanical properties of Granitoid rocks. New Findings In Applied Geology, 12(24): 54-64. doi: 10.22084/nfag.2018.14348.1268 (in Persian).
Hemmati, A., Ghafoori, M., Moomivand, H., & Lashkaripour, G. R (2020) The effect of mineralogy and textural characteristics on the strength of crystalline igneous rocks using image-based textural quantification. Engineering Geology, 266:105467.
Howarth, D. F., and Rowlands, J. C (1986) Development of an index to quantify rock texture for qualitative assessment of intact rock properties. Geotechnical Testing Journal, 9: 169–179. doi: 10.1520/gtj10627j.
Kolay, E., and Baser, T (2017) The effect of the textural characteristics on the engineering properties of the basalts from Yozgat region, Turkey. Journal of the Geological Society of India, 90: 102–110.
Schulz, B., Sandmann, D., Gilbricht, S (2020) SEM-Based Automated Mineralogy and Its Application in Geo- and Material Sciences. Minerals, 10: 1004. doi:10.3390/min10111004. 10.3390/min10111004.
Ulusay, R (2014) The ISRM suggested methods for rock characterization, testing and monitoring: 2007-2014, Springer, 201 p.
Williams, H., Turner, F. J., Gilber, C. M (1954) Petrography: An Introduction to the Study of Rocks in Thin Section. W.H. Freeman Company: San Francisco, CA, USA, 406 p.
Zorlu, K., Ulusay, R. T., Ocakoglu, F., Gokceoglu, C. A., Sonmez, H (2004) Predicting intact rock properties of selected sandstones using petrographic thin-section data. International Journal of Rock Mechanics Mineral Science, 41: 93–98. doi:10.1016/j.ijrmms. 2004.03.025.