Petrography and geochemistry of Shahbazan Formation dolomites and investigation of its possible boundary with Asmari Formation from the elemental geochemistry point of view (Northeastern Kohdasht, South Lorestan)

Authors

1 Assist. Prof., Dept., of Geology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran

2 Ph. D. Student, Sedimentology and Sedimentary Rock, Bu Ali Sina University, Hamadan, Iran

Abstract

Shahbazan Formation (Middle to Late Eocene) consists of dolomite sequences, dolomite limestone and marl. In order to investigate the lithology and geochemistry of the deposits of this Formation and determine its possible boundary with the Asmari Formation, a 121-meter thick stratigraphic section was selected in the northeast of Kohdasht. In this section, the Shahbazan Formation with limestone and dolomite lithology is discontinuously placed on the Kashkan clastic Formation and its upper border is covered by the carbonates of the Asmari Formation as an erosional discontinuity. Field and petrographic studies were carried out on 90 sedimentary thin sections and geochemical studies on 30 samples from Shahbazan dolomite Formation and 10 samples from Asmari carbonate Formation using EDS and EPMA methods. According to petrographic and geochemical data, two groups of dolomites were identified. Primary dolomites (dolomicrites) were observed in sizes less than 10 microns and secondary dolomites (dolomicrosparites and dolosparites) in sizes greater than 10 microns. The presence of evidence such as bird's eye porosity, algal laminae and intraclasts and the absence of evaporite minerals in the studied samples showed that the primary dolomites were formed in a tidal model, then due to seepage of basin floor sediments in the carbonate platform of Shahbazan Formation, secondary dolomites are spread in a shallow to medium burial diagenesis model. Using elemental analysis, it was determined that from the primary dolomites to the secondary dolomites, there is an increase in the amount of Fe, Mg, and Mn elements, and at the same time, the amount of Sr, Ca, and Na elements decreases. In the possible boundary between Shahbazan and Asmari formations, the amount of Sr, Ca, Na, Sr/Mn and Ca/Mg increases, and the amount of Mn, Mg elements and the ratio of Mn/Ca decrease. Geochemical evidence showed that all the studied dolomites are non-stoichiometric (Ca/Mg ≥2) and high amounts of Na element with an average of 0.6% by weight indicate this issue.

Keywords


آدابی، م. ح (1390)  ژئوشیمی رسوبی، تهران، آرین زمین (چاپ دوم)، 503 ص.
آقانباتی، س. ع (1385) زمـین­شـناسی ایــران. سـازمـان زمین­شناسی و اکتشافات معدنی کشور. 586 ص
بهرامی، ف.، موسوی­حرمی، س، ر.، خانه­باد، م.، محمودی­قرائی، م. ح.، صادقی (1393) رخساره­ها، محیط­رسوبی و عملکرد فرآیندهای دیاژنزی موثر بر کیفیت مخزنی سازند آسماری در میدان نفتی رامین، دوفصلنامه رسوب­شناسی کاربردی، دوره 2، شماره 4، ص 16- 36.
پیریایی، ع. ر.، فیضی، ا.، صوفیانی، ح.، همت، س. و معتمدی، ب (1393) پالئوژئوگرافی نهشته­های ترشیاری زاگرس، گزارش داخلی مدیریت اکتشاف نفت، شماره - GR2362، 207 ص.
جانباز، م.، محسنی، ح.، پیریایی، ع.، سوئن، ر.، یوسفی­یگانه، ب.، سرداقی­صوفیانی، ح (1397) فرآیندهای دیاژنزی سازند شهبازان در شرق پهنه لرستان. نشریه علوم زمین، سال 27، شماره 109، ص 67- 82.
عبدل­نیا، ا.، مغفوری­مقدم، ا. و باغبانی، د (1396) چینه­نگاری سازند شهبازان در حوضه لرستان، نشریه علوم زمین، سال 26، شماره 103، ص 157-168.
عبدی، ا.، آدابی، م، ح (1388) پتروگرافی انواع دولومیت­ها، بررسی دیاژنز، مرز احتمالی سازند شهبازان- آسماری و تفکیک رخساره­ها بر اساس ویژگی­های ژئوشیمیایی دولومیکرایت­ها، شواهد پتروگرافی و روش­های آماری در برش دارابی (جنوب غرب ایران). نشـریه پژوهـش­های چینه­نگاری و رسوب­شناسی، دوره 25، شماره 1، ص 81- 100.
فرشی، م.، موسوی­حرمی، س، ر.، محبوبی، ا.، خانه­باد، م (1396) رخساره­ها و فرآیندهای دیاژنزی و تاثیر آن­ها بر توزیع و ویژگی­های پتروفیزیکی و کیفیت مخزنی سازند آسماری در میدان نفتی گچساران، مجله رسوب­شناسی کاربردی، دوره 5، شماره 9، ص 40- 57.
محسنی، ح.، عبدلله­پور، م.، رفیعی، ب (1390) پتروگرافی و منشا دولومیت­های سازند شهبازان (ائوسن میانی تا بالایی) در شرق اسلام­آباد غرب (کرمانشاه). نشریه یافته­های نوین زمین­شناسی کاربردی، دوره 5، شماره 10، ص 1 تا 11.
مطیعی، ه (1374) زمین­شناسی نفت زاگرس )جلد اول و دوم(، انتشارات سازمان زمین­شناسی کشور، تهران، 1010 ص.
میربیک سبزواری، ک.، صداقت­نیا، م (1400) سنگ­نگاری و بررسی مدل دولومیتی شدن سازند شهبازان با استفاده از آنالیز عنصری (تاقدیس ماله کوه، شمال پلدختر)، دوفصلنامه رسوب­شناسی کاربردی، دوره 10، شماره 19، ص 54-71.
یوسفی، ب.، علوی، ع. معظمی گودرزی، ف (1391) شناخت سنگ­های رسوبی در صحرا، 111 ص.
Adabi, M. H. and Rao, C. P (1996) Petrographic, element and isotopic criteria for Central Iran: Iranian Petroleum Institute, 15: 561- 574.
Adabi, M. H (2009) Multistage dolomitization of upper Jurassic Muzduran Formation, Kopet-Dagh basin, N.E. Iran: Crab. Eva, 24: 16-32.
Al-Aasm, I., S. and Packard, J., J. P (2000) Stabilization of early-formed dolomite, atale of divergence from two Mississippian dolomites: Sedimentary Geology, 131: 97-108.
Alavi, M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforland evolution, American Journal of Science, 304: 1–20.
Amthor, J. E., Friedman, G. M (1992) Early to late-diagenetic dolomitization of platform carbonates: Lower Ordovician Ellenburger Group, Permian Basin, West Texas. J. Sed. Petrol, 62: 1023-1043.
Azmy, K., Veizer, J., Misi, A., de Oliveira, T. F., Sanches, A. L. and Dardenne, M. A (2001) Dolomitization and isotope stratigraphy of the Vazante formation, São Francisco Basin, Brazil: Precambrian Research, 112(3): 303-329.
Azomani, E., Azmy, K., Blamey, N., Brand, U. and Al-Aasm, I (2013) Origin of Lower Ordovician dolomites in eastern Laurentia: Controls on porosity and implications from geochemistry: Marine and Petroleum Geology, 40: 99-114.
Dickson, J. A. D (1965) A modified staining technique for carbonate in the thin section: Nature, 205: 587.
Callen, J. M (2016) In Situ Geochemistry of Middle Ordovician Dolomites of the Upper Mississippi Valley: Evaluation of the Dorag Model and New Implications for Dolomitizing Fluids: Master dissertation, Louisiana State University, 88 p.
Dunham, R. J (1962) Classification of carbonate rocks according to depositional texture. American Association of Petroleum Geologists, 108-121.
Folk, R. L (1959) Practical petrographic classification of limestones. American Association of Petroleum Geologists. Bulletin, 3 (1): 1-38.
Friedman, G. M. and Sanders, J. E (1967) Origin and Occurrence of Dolostones. In: Chilingar, G. V., Bissell, H. J. and Fairbridge, R. W., Eds., Carbonate Rocks, Origin, Occurrence, and Classification, 267-348.
Geske, A., Zorlu, J., Richter, D. K., Buhl, D., Niedermayr, A. and Immenhauser, A (2012) Impact of diagenesis and low grade metamorphosis on isotope (δ26Mg, δ13C, δ18O and 87Sr/86Sr) and elemental (Ca, Mg, Mn, Fe and Sr) signatures of Triassic sabkha dolomites, Chemical Geology, 332 (333): 45-64.
Gregg, J. M., and Shelton, K. L (1990) Dolomitization and Dolomite Neomorphism in the Back Reef Facies of the Bonneterre and Davis Formations (Cambrian), Southeastern Missouri. Journal of Sedimentary Research, 60: 549-562.
Gregg, J. M. and Sibley, D. F (1984) Epigenetic dolomitization and the origin of xenotopic dolomite texture: Journal of Sedimentary Petrology, 54: 908- 931.
Hardie, L (1987) Dolomitization: A Critical View of Some Current Views. Journal of Sedimentary Research, 57: 166-183.
Harrison, J. V (1935) The Geology of Lurestan. Co. Rep. No 490.
Hou, Y., Azmy, K., Berra, F., Jadoul, F., Blamey, N. J. F., Gleeson, S. A. and Brand, U (2016) Origin of the Breno and Esino dolomites in the western southern Alps (Italy): implications for a volcanic influence: Marine and Petroleum Geology, 69: 38-52.
Hu, W., Chen, Q., Wang, X. and Cao, J (2010) REE models for the discrimination of fluids in the formation and evolution of dolomite reservoirs: Oil Gas Geology, 31(6): 810-818.
Humphrey, J. D (1988) Late Pleistocene mixing zone dolomitization, south-eastern Barbados, West Indies. Sedimentology, 35: 327-348.
James, G. A. and Wynd, J. G (1965) Stratigraphic nomenclature of Iranian oil consortium, agreement area, American Association of Petroleum Geologists Bulletin, 49(12): 2182-2245.
Kirmaci, M. Z (2008) Dolomitization of the late Cretaceous-Paleocene platform carbonates, Golkoy (Ordu), eastern Pontides, NE Turkey: Sedimentary Geology, 203: 289-306
Land, L. S (1983) Dolomitization. AAPG Education Course Note Series, 24: 1-20.
Land, L. S (1985) The origin of massive dolomite: Journal of Geological Education, 33: 112-125.
Land, L. S (1991) Dolomitization of the Hope Gate Formation (north Jamaica) by seawater: reassessment of mixing zone dolomite. In: Taylor, H. P., O’Neil, J. R., Kaplan, I. R. (Eds.), Stable Isotope Geochemistry: A Tribute to Samuel Epstein, Geochemical Society, Special Publications, 3: 121-133.
Lee, Y. I. and Friedman, G. M (1987) Deep-burial dolomitization in the Lower Ordovician Ellen Burger Group carbonates in west Texas andsouth-eastern New Mexico. Journal of Sedimentary Research, 57: 544-557.
Liewellyn, V. P. G (1974) Geological map of Liam- Kuh Dasht, 1:250000.
Machel, H. G. and Mountjoy, E. W (1986) Chemistry and environments of dolomitization - a reappraisal, Earth Science Reviews, 23: 175- 222.
Mattes, B. W., and E. W. Mountjoy (1980) Burial dolomitisation of the Upper Devonian Miette buildup, Jasper National Park, Alberta. In: Concepts and Models of Dolomitization (Eds. D.H. Zenger, J.B. Dunham and R.L. Ethington): SEPM Spec. Publ, 28: 259–297.
Mazzollo, S. J (1992) Geochemical and neomorphic alteration of dolomite: a review: Carbonates and Evaporites, 7: 21–37.
Miller, J. K. and R. L. Folk (1994) Petrographic, geochemical and structural constraints on the timing and distribution of postlithification dolomite in the Rhaetian Portoro (Calcare nero‖) of the Portovenere Area, La Spezia, Italy. In: B. H. Purser, M. E.
Morrow, D. W (1982) Diagenesis II. Dolomite-part II: dolomitization models and ancient dolostones: Geoscience Canada, 9: 95-107.
Murris, R. J (1980) Hydrocarbon habitat of the Middle East, American Association of Petroleum Geologists, Memoir, 6: 765-800.
Navarro-Ciurana, D., Corbella, M., Cardellach, E., Vindel, E., Gomez-Gras, D. and Griera, A (2016) Petrography and geochemistry of fault-controlled hydrothermal dolomites in the Riópar area (Prebetic Zone, SE Spain), Marine and Petroleum Geology, 71: 310-328.
Shukla, V. and Baker, P. A. eds (1988) Sedimentology and geochemistry of dolostones. Society for Sedimentary Geology, 43: 266.
Shunli, Z. H., Zhengxiang, L. V., Yi, W., Sibing, L (2018) Origins and Geochemistry of Dolomites and Their Dissolution in the Middle Triassic Leikoupo Formation, Western Sichuan Basin, China. Minerals 2018, 8: 289
Sibley, D. F., Gregg, J. M (1987) Classification of dolomite rock textures. J. Sediment. Petrol, 57: 967–975.
Swart, P. K., Cantrell, D. L., Westphal, H., Handford, C. R. and Kendall, C. G (2005) Origin of dolomite in the Arab-D reservoir from the Ghawar Field, Saudi Arabia: evidence from petrographic and geochemical constraints. Journal of Sedimentary Research, 75 (3): 476-491.
Tucker, M. E. and Wright, V. P (1990) Carbonate Sedimentology: Blackwell, Oxford, 482 p.
Tucker, M. E., and Wright, V. P (1991) Carbonate Sedimentology. Blackwell Scientific Publications, Oxford, 482p.
Veizer, J (1983) Chemical diagenesis of carbonates: theory and application of trace element techniques. In Stable isotopes in sedimentary geology: Blackwell Scientific Publications, Oxford, 482p.
Veizer, J., Hinton, R. W., Clayton, R. N. and Lerman, A (1987) Chemical diagenesis of carbonates in thinsections: Ion microprobe as a trace element tool: Chemical Geology, 64(3): 225-237.
Wanless, H. R (1979) Limestone response to stress: pressure solution and dolomitization: Jour.Sed. Petrol, 49: 437-462.
Warren, J. K (2000) Dolomite: occurrence, evolution and economically important association: Earth Sci Reviews, 52: 1-81.
Whitaker, F. F., Smart, P. L. and Jones, G (2004) Dolomitization From conceptual to numerical models: Geological Society, London, Special Publications, 235(1): 99-139.
Wilson, M. E. J., Evans, M. J., Oxtoby, N. H., Nas, D. S., Donnelly, T. and Thirlwall, M (2007) Reservoir quality, textural evolutionand origin of faultassociated dolomites: American Association of Petroleum Geologists Bulletin, 91: 1247-1273.
Ye, Q. and Mazzullo, S. J (1993) Dolomitization of Lower Permian platform facies, Wichita Formation, North Platform, Middle Basin, Texas: Carbonates and Evaporites, 8: 55-70.
Ying, R., Dakang, Z., Chonglong, G., Queqi, Y., Rui, X., Langbo, J., Yangjinfeng, J., Ningcong, Z. H (2017) Dolomite geochemistry of the Cambrian Longwangmiao Formation, eastern Sichuan Basin: Implication for dolomitization and reservoir prediction. Petroleum Research 2 (2017) 64e76.
Zenger, D. H., Dunham, J. B., and Ethington R. L (1980) Concepts and Models of Dolomitization. Vol. 28, Society for Sedimentary Geology, Special Publications, 320 p.
Zenger, D. H (1983) Burial dolomitization in the Lost Burro Formation/Devonian, east central California and the significance of late diagenetic dolomitization: Geology, 11: 519-522.
Zhang, X., Hu, W., Jin, Z., Zhang, J., Qian, Y., Zhu, J., Zhu, D., Wang, X. and Xie, X (2008) REE compositions of Lower Ordovician dolomites in Central and North Tarim Basin, NW China: A potential REE proxy for ancient seawater: Geology Sinica, 82(3): 610-621.
Zhao, C., Yu, B., Zhang, C., Chen, Y. and Qi, X (2012) A discussion on the formation mechanism of dolomite associated with hydrothermal solution in Tazhong area: Petrology and Mineralogy, 31(2): 164-172.
Zeigler, M. A (2001) Late Permian to Holocene paleofacies evolution of the Arabian plate and its hydrocarbon occurrences, GeoArabia, 6 (3): 445-504.