Evaluation of the S20 brittleness index, Engineering and petrographic properties of some igneous rocks of Sangan iron ore mine in Khaf

Authors

1 M. Sc., student. Dept., of Geology, Ferdowsi University of Mashhad, Mashhad

2 Prof., Dept., of Geology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad

Abstract

Brittleness is one of the most important mechanical properties of rock which has a widespread application in underground constructs drilling like tunnel drilling. Although many method have been introduced for estimating brittleness, no standard has been mentioned for measuring brittleness. In this research, experiments for determining   brittleness of S20 along with petrographic (main mineral percentage), physical (dry density, saturation density, porosity and water absorption percentage), mechanical (uniaxial compressive strength, Brazilian tensile strength , point load test) and dynamic properties (pressure and shear wave velocity) in the two states of dry and saturated were performed on 19 test samples of igneous rocks (granite, granodiorite and dacite) selected from Sangan iron ore mine in khaf. Statistical analysis of the results shows that brittleness of samples increases with increasing alkali feldspar and quartz and also reducing plagioclase. Also existence of micro particles and carbonate veins decreases strength and increases the brittleness of rock and facilitate excavatability of samples which is more prominent in saturated state. There is an inverse relationship between S20 brittleness and the brittleness indices, and as the value of S20   brittleness increases, the value of brittleness indices decrease. The relationship between S20 brittleness and brittleness indices B3 and B4 has the highest coefficient of determination. As a result, it can be said that the brittleness measured in the laboratory can be more realistic in expressing the brittleness of rocks.

Keywords


صفری­فرخد، س.، لشکری­پور، غ. ر.، حافظی­مقدس، ن (1397) ارزیابی شاخص شکنندگی سنگ­آهک و بررسی عوامل موثر بر آن در حالت خشک و اشباع. مجله انجمن زمین­شناسی مهندسی ایران، دوره 12، شماره 3، ص 21-36.
فهیمی­فر، ا.، سروش، ح (1380) آزمایش­‌های مکانیک سنگ، مبانی نظری و استانداردها، جلد اول: آزمون­های آزمایشگاهی، انتشارات شرکت سهامی آزمایشگاه فنی و مکانیک خاک.
قادری­نژاد، ص.، لله گانی دزکانی، س.، نجانی، ح. ر.، علی پنهانی، ب (1397) ارائه شاخصی جدید برای ارزیابی تردی سنگ. نشریه مهندسی منابع معدنی، شماره 3، ص 43-55.
کریم­پور، م. ح.، سعادت، س.، ملک­زاده شفارودی، آ (1381) شناسایی و معرفی کانی­سازی نوع Fe-Oxides Cu-Au و مگنتیت مرتبط با کمربند ولکانیکی- پلوتونیکی خواف- کاشمر- بردسکن. بیست و یکمین گردهمایی علوم زمین.
گل­محمدی، ع.، حیدری، م.، کرابی، ب (1392) نقشه زمین شناسی 1:5000 آنومالی غربی تا مرکزی معدن سنگ­آهن سنگان خواف.
Aligholi, S., Lashkaripour, Gh. R., Ghafoori, M (2016) Strength/Brittleness Classification of Igneous Intact Rocks Based on Basic Physical and Dynamic Properties. Rock Mechanics and Rock Engineering, 50(1): 45-65.  
Altindag, R (2002) The evaluation of rock brittleness concept on rotary blast hold drills. Journal of the Southern African Institute of Mining and Metallurgy, 102(1): 61-66.
Bruland, A (1998) Project Report 13A-98 Drillability Test Methods, 18 p.
Dahl, F (2003) DRI, BWI, CLI Standards. NTNU, Angleggsdrift, Trondheim.
Dahl. F., Bruland, A., Jakobsen, P. D., Nilsen, B., Grov, E (2012) Classifications of properties influencing the drillability of rocks, based on the NTNU/SINTEF test method. Tunnelling and Underground Space Technology, 28: 150-158.
Diamantis,K.,Gartzos,E.,Migiro, G (2009)Study on uniaxial compressivestrength,point load strength index, dynamic and physical properties of serpentinites fromcentral greece: test results and empirical relation, Engineering Geology, 108(3): 199-207.
Engelder, T., Plumb, R (1984) Changes in situ ultrasonic properties of rock on strain relaxation, International Journal of Rock Mechanics Mining Sciences Geomechanics Abstracts, 21(2): 75– 82.
Hajiabdolmajid, V., Kaiser, P., Martin, C (2003) Mobilised strength components in brittle failure of rock. Gé otechnique, 53(3): 327–336.
Hemmati, A., Ghafoori, M., Moomivand, H., Lashkaripour, Gh. R (2020) The effect of mineralogy and textural characteristics on the strength of crystalline igneous rocks using image-based textural quantification. Engineering Geology, 266: 10-16.
Holt, R. M., Fjaer, E., Nes, O. M., Alassi, H. T (2011) A shaly look at brittleness. In: 45th US rock mechanics/geomechanics symposium. American Rock Mechanics Association: 11–366.
Howell, J. V (1960) Glossary of geology and related sciences. American Geological Institute, Washington, DC.
Hucka, V., Das, B (1974) Brittleness determination of rocks by different methods. Int J Rock Mech Min Sci Geomech Abstr, 17(10): 389–392.
Jin, X., Shah, S. N., Roegiers, J. C., Zhang, B (2014a) Fracability evaluation in shale reservoirs-an integrated petrophysics and geomechanics approach. In: Proceedings of the SPE Hydraulic Fracturing Technology Conference, Society of Petroleum Engineers.
Jin. X, Shah, S. N., Truax, J. A., Roegiers, J. C (2014b) A Practical petrophysical approach for brittleness prediction from porosity and sonic logging in shale reservoirs. In: SPE annual technical conference and exhibition, Society of Petroleum Engineers.
Karimpour, M. H (2006) Cu-Au mineralizaion accompany with magnetite- spcullarite (IOCG) and examples in Iran. 9th Iranian Geology Society Conference, University of Tarbiat Moallem, Tehran, Iran.
Matern, N. V., Hjelmer, A (1943) Forsok med pagrus (Tests with Chippings), Medelande nr. 65, Statens väginstitut, Stockholm, p 65. English summary, 56-60.
Meng, F., Zhou, H., Zhang, C., Xu, R., Lu, J (2015) Evaluation methodology of brittleness of rock based on post-peak stress–strain curves. Rock Mechanics and Rock Engineering, 48: 1787-1805.
Mohamed, M. E. S., Saeed, M. A., Radwan, N. A. A (2019) Prediction of unconfined compressive strength of rocks by point load strength index.   Journal Of Al-Azhar University Engineering Sector, 14(51): 453-459.
Nygård, R., Gutierrez, M., Bratli, R. K., Høeg, K (2006) Brittle–ductile transition, shear failure and leakage in shales and mudrocks. Marine and Petroleum Geology, 23(2): 201–212.
Ramsay, J. G (1967) Folding and fracturing of rocks. Mc Graw Hill Book Company, 568p.
Rickman, R., Mullen, M. J., Petre, J. E., Grieser, W.V., Kundert, D (2008) A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett Shale. In: Proceedings of the SPE annual technical conference and exhibition, Society of Petroleum Engineers.
Streckeisen, A. L (1974) Classification and nomenclature of plutonic rocks. Geologische rundschau, 63(2): 773-786.
Su, O., Sakiz, U., Köken, E (2014) Drillability Assessment of Rocks Based on Strength and Brittleness, International Pittsburgh Coal Conference.
Tarasov, B., Potvin, Y (2013) Universal criteria for rock brittleness estimation under triaxial compression. Int J Rock Mech Min Sci, 59: 57–69.
Thuro, K (1997) Drillability prediction: geological influences in hard rock drill and blast tunnelling, Geologiche Rundschau, 86(2): 426-438.
Yagiz, S (2009) Assessment of brittleness using rock strength and density with punch penetration test. Tunnelling and Underground Space Technology, 24: 66-74.
Yang, Sh. Q., Yin, P. F., Ranjith, P. G (2020) Experimental Study on Mechanical Behavior and Brittleness Characteristics of Longmaxi Formation Shale in Changning, Sichuan Basin, China, Rock Mechanics and Rock Engineering. https://doi.org/10.1007/s00603-020-02057-8.
Yarali, O., Soyer, E (2011) The effect of mechanical rock properties and brittleness on drillability. Scientific Research and Essays, 6: 1077-1088.
Zhang, D., Ranjith, P. G., Perera M. S. A (2016) The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: a review. J Pet Sci Eng, 143: 158–170.