Estimation of shear wave velocity using Gaussian process regression, multivariate regression and multilayer perceptron artificial neural network

Authors

1 Assist. Prof., Dept., of Industrial Engineering, Birjand University of Technology, Birjand, Iran

2 Assist. Prof., Dept., of Civil Engineering, Urmia University of Technology, Urmia, Iran

3 Assist. Prof., Dept., of Mining Engineering, Birjand University of Technology, Birjand, Iran

Abstract

Estimation of wave velocities is very important for designing geotechnical structures and modeling deep drillings. The purpose of this study is to estimate shear wave velocity (Vs) using Gaussian process regression (GPR), multilayer perceptron artificial neural network (MLP-ANN) and multivariate linear regression (MVLR) methods. In order to carry out this study, 14 rock blocks were prepared from the northwest of Damavand city and after being transferred to the laboratory, cores were extracted from them. In order to develop a predictive model, point load index, compressional wave velocity (Vp), porosity and density tests were performed on 61 rock core samples. Point load index, Vp, porosity and density were used as input parameters of models to predict Vs. The results of lithological studies showed that the studied sandstones are feldspathic litharnite and litharnite. The results showed that the ratio of Vp to Vs is equal to 1.70 on average. The results of the MLP-ANN showed that the highest accuracy of the models was obtained by using the Levenberg-Marquardt training algorithm. The most accurate models were obtained using this algorithm to estimate the Vs in neuron number 2 (optimal neuron). The GPR, MLP-ANN and MVLR predicted Vs with correlation coefficients of 0.97, 0.96 and 0.95, respectively. GPR method showed better performance in predicting Vs than other methods.

Keywords


جمشیدی، ا (1397) تأثیر چگالی و تخلخل بر میزان دقت روابط تخمین مقاومت فشاری تک­محوری و مدول­الاستیسیته سنگ­آهک از سختی واجهشی اشمیت. نشریه یافته­های نوین زمین­شناسی کاربردی، دوره 12، شماره 24، ص 65-76.
نصیری، ش.، آبدانان م. ز.، سامان، ن. ز (1399) پیش‌بینی پذیرش کلی میوه موز با استفاده از پردازش تصاویر دیجیتالی و مدل رگرسیون فرآیند گاوسی در خلال انبارمانی، نشریه پژوهش­های علوم و صنایع غذایی ایران، دوره 16، شماره 2، ص 171-191.
Abdi, Y., Momeni, E., Rashidi Khabir, R (2020) A Reliable PSO-based ANN Approach for Predicting Unconfined Compressive Strength of Sandstones. The Open Construction & Building Technology Journal, 14(1): 237-249
Abdi, Y., Taheri-Garavand, A., Zarei-Sahamieh, R (2018) Prediction of strength parameters of sedimentary rocks using artificial neural networks and regression analysis. Arabian Journal of Geosciences, 11 (19): 1-11.
Ajalloeian, R., Jamshidi, A. and Khorasani, R (2020) Assessments of ultrasonic pulse velocity and dynamic elastic constants of granitic rocks using petrographic characteristics. Geotechnical and Geological Engineering, 38(3): 2835-2844.
Anon, OH (1979) Classification of rocks and soils for engineering geological mapping, Part 1: Rock and soil materials, Bulletin of Engineering Geology and the Environment, 19 (1): 364–37.
Ansari, Y., Hashemi, A (2017) Neural Network Approach in Assessment of Fiber Concrete Impact trength, Journal of civil Engineering and Materials Application, 1(3): 88-97.
 ASTM (2002) Standard test method for determination of the point load strength index of rock. ASTM D5731 International, West Conshohocken.
 ASTM. (1983) Test methods for ultra violet velocities determination. Designation D2845.
Behnamnia, A., Barati, M (2019) Seismic Behavior of Steel-Concrete Composite Columns Under Cyclic Lateral Loading. Journal of civil Engineering and Materials Application, 3(4): 183-192.
 Broch, E., Franklin, J (1972) The point-load strength test”, International Journal of Rock Mechanics and Mining Sciences, 9(6): 669-97.
Castagna, J. P., Batzle, M. L., and Kan, T. K. (1993) Rock physics- the link between rock properties and AVO response in Castagna, J. P., and Backus, M. M., Eds., Offset-dependent reflectivity-Theory and practice of AVO analysis”, Society of Exploration Geophysicists, 135–171.
Dao, D. V., Adeli, H., Ly, H. B., Le, L. M., Le, V. M., Le, T. T. and Pham, B. T (2020) A sensitivity and robustness analysis of GPR and ANN for high-performance concrete compressive strength prediction using a Monte Carlo simulation. Sustainability, 12(3): 830.
Eberli, G. P., Anselmetti, F. S. & Incze, M. L (2003) Factors controlling elastic properties in carbonate sediments and rocks, The Leading Edge: 654-660.
Fereidooni, D (2016) Determination of the geotechnical characteristics of hornfelsic rocks with a particular emphasis on the correlation between physical and mechanical properties. Rock Mechanics and Rock Engineering, 49(7): 2595-2608.
 Folk, R. L (1974) Petrology of Sedimentary Rocks. Hemphill, Austin, 600p
Gao, W., Karbasi, M., Hasanipanah, M., Zhang, X. and Guo, J (2018) Developing GPR model for forecasting the rock fragmentation in surface mines. Engineering with Computers, 34(2): 339-345.
Ghafoori, M., Rastegarnia, A. Lashkaripour, G. R (2018) Estimation of static parameters based on dynamical and physical properties in limestone rocks. Journal of African Earth Sciences, 137: 22-31.
Gupta, V., Sharma, R (2012) Relationship between textural, petrophysical and mechanical properties of quartzites: A case study from northwestern Himalaya, Engineering Geology, 1(9): 135-136.
Hassanzadeh, R. Beiranvand, B. Komasi, M. Hassanzadeh, A (2021) Investigation of data mining method in optimal operation of Eyvashan earth dam reservoir based on PSO algorithm., Journal of civil Engineering and Materials Application, 5(3): 125-137.
He, H., Siu, W. C (2011) Single image super-resolution using Gaussian process regression. In CVPR 2011 (pp. 449-456). IEEE.
Hsieh, Y. M., Li, H. H., Huang, T. H., Jeng, F. S (2008) Interpretations on how the macroscopic mechanical behavior of sandstone affected by microscopic properties-revealed by bonded-particle model, Engineering Geology, 99: 1–10.
ISRM (1981) Rock characterization testing and monitoring. In: Brown, E.T. (Ed.), ISRM Suggested Methods. Pergamon Press, Oxford.
Jahed Armaghani, D., Asteris, P. G., Askarian, B., Hasanipanah, M., Tarinejad, R. and Huynh, V. V (2020) Examining hybrid and single SVM models with different kernels to predict rock brittleness. Sustainability, 12(6): 2229.
Kookalani, S., Cheng, B (2021) Structural analysis of GFRP elastic gridshell structures by particle swarm optimization and least square support vector machine algorithms, Journal of civil Engineering and Materials Application, 5(3): 139-150.
Lashkaripour, G. R., Rastegarnia, A., Ghafoori, M (2018) Assessment of brittleness and empirical correlations between physical and mechanical parameters of the Asmari limestone in Khersan 2 dam site, in southwest of Iran, Journal of African Earth Sciences, 138: 124-132.
Lawal, A. I., Kwon, S., Aladejare, A. E., Oniyide, G. O. (2022) Prediction of the static and dynamic mechanical properties of sedimentary rock using soft computing methods. Geomechanics and Engineering, 28(3): 313-324.
Lawal, A. I., Olajuyi, S. I., Kwon, S., Aladejare, A. E. and Edo, T. M (2021) Prediction of blast-induced ground vibration using GPR and blast-design parameters optimization based on novel grey-wolf optimization algorithm. Acta Geophysica, 69(4): 1313-1324.
Lotfollahi, S., Ghorji, M., Hoseini Toodashki, V (2018) An Investigation into the Effect of Foliation Orientation on Displacement of Tunnels Excavated in Metamorphic Rocks. Journal of civil Engineering and Materials Application, 2(3): 138-145.
Mahmoodzadeh, A., Mohammadi, M., Ali, H. F. H., Abdulhamid, S. N., Ibrahim, H. H., Noori, K. M. G (2021) Dynamic prediction models of rock quality designation in tunneling projects. Transportation geotechnics, 27: 100497.
Maleki, M. A., Emami, M (2019) Application of SVM for investigation of factors affecting compressive strength and consistency of geopolymer concretes. Journal of civil Engineering and Materials Application, 3(2): 101-107.
Martınez-Martınez, J., Benavente, D., Garcı´a-del-Cura, M. A (2012) Comparison of the static and dynamic elastic modulus in carbonate rocks, Bulletin of Engineering Geology and the Environment, 71: 263-268.
Mikaeil, R., Esmaeilzade, A., Shaffiee Haghshenas, S (2021) Investigation of the Relationship Between Schimazek's F-Abrasiveness Factor and Current Consumption in Rock Cutting Process. Journal of civil Engineering and Materials Application, 5(2): 47-55.
Moghaddam, D. D., Rahmati, O., Panahi, M., Tiefenbacher, J., Darabi, H., Haghizadeh, A., Haghighi, A. T., Nalivan, O. A. and Bui, D. T. (2020) The effect of sample size on different machine learning models for groundwater potential mapping in mountain bedrock aquifers. Catena, 187: 104421.
Momeni, E., Dowlatshahi, M. B., Omidinasab, F., Maizir, H., Armaghani, D. J (2020) Gaussian process regression technique to estimate the pile bearing capacity. Arabian Journal for Science and Engineering, 45(10): 8255-8267.
Naseri, F., Lotfollahi, S., Bagherzadeh Khalkhali, A (2017) Dynamic Mechanical Behavior of Rock Materials. Journal of Civil Engineering and Materials Application, 1(2): 39-44.
Nazmi, A., Paydar, A., Firoozian, S (2021) Studying the Role of Traffic Flow Control Methods in Freeways and its Effect on Drivers Behavior, Journal of Civil Engineering and Materials Application, 5(1): 17-24.
Oshnavieh, D. and Bagherzadeh Khalkhali, A (2019) Use of shear wave velocity in evaluation of soil layer’s condition after liquefaction. Journal of civil Engineering and Materials Application, 3(3): 119-135.
Pickett, G. R (1963) Acoustic character logs and their applications in formation evaluation. Journal of Petroleum Technology, 15: 650–667.
Saghi, H., Behdani, M., Saghi, R., Ghaffari, A. R., Hirdaris, S (2019) Application of Gene Expression Programming Model to Present a New Model for Bond Strength of Fiber Reinforced Polymer and Concrete, Journal of civil Engineering and Materials Application, 3(1): 15-29.
Schon, J. H (2011) Physical Properties of Rocks_A workbook (Handbook of Petroleum Exploration and Production, 8, ELSEVIER.
Shamsashtiany, R., Ameri, M (2018) Road Accidents Prediction with Multilayer Perceptron MLP modelling Case Study: Roads of Qazvin, Zanjan and Hamadan”, Journal of civil Engineering and Materials Application, 2(4): 181-192.
Sheriff, R. E., Geldart, L. P (1995) Exploration Seismology, 2nd ed. Cambridge University press
Tamrakar, N. K., Yokota, S. and Shrestha, S. D. (2007) Relationships among mechanical, physical and petrographic properties of Siwalik sandstones, Central Nepal Sub-Himalayas, Engineering Geology, 90(4): 105-123.
Tange, R. I., Rasmussen, M. A., Taira, E. and Bro, R (2017) Benchmarking support vector regression against partial least squares regression and artificial neural network: Effect of sample size on model performance. Journal of Near Infrared Spectroscopy, 25(6): 381-390.
Taylor, R (1990) Interpretation of the correlation coefficient: a basic review. Journal of diagnostic medical sonography, 6(1): 35-39.
Ulusay, R., Tureli, K., Ider, M. H (1994) Prediction of engineering properties of a selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques. Engineering Geology, 37: 135-157.
Uyanık, O., Sabbağ, N., Uyanık, N. A., Öncü, Z (2019) Prediction of mechanical and physical properties of some sedimentary rocks from ultrasonic velocities. Bulletin of Engineering Geology and the Environment, 78(8): 6003-6016.
Vanorio, T., Scotellaro, C., Mavko, G (2008) The effect of chemical and physical processes on the acoustic properties of carbonate rocks, The Leading Edge: 1040-1048.
Viswanathan, R. and Samui, P (2016) Determination of rock depth using artificial intelligence techniques. Geoscience Frontiers, 7(1): 61-66.
Wani, U., Hamid, I., Wani, S. G., Farooq, S (2022) Statistical Analysis of b-value Parameter under Unconfined Uni-axial Compression Testing, Journal of Civil Engineering and Materials Application, 6(3): 1-29.
Waszkiewicz, S., Krakowska-Madejska, P., Puskarczyk, E (2019) Estimation of absolute permeability using artificial neural networks (multilayer perceptrons) based on well logs and laboratory data from Silurian and Ordovician deposits in SE Poland”. Acta Geophysica, 67(6): 1885-1894.
Yang, D., Zhang, X., Pan, R., Wang, Y. and Chen, Z (2018) A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve. Journal of Power Sources, 384: 387-395.
 Yasar, E., Ranjith, P. G., Perera, M. S. A (2010) Physico-mechanical behaviour of southeastern Melbourne sedimentary rocks, International Journal of Rock Mechanics and Mining Science, 47: 481-487.
 Zorlu, K., Gokceoglu, C., Ocakoglu, F, Nefeslioglu, H.A., Acikalin, S (2008) Prediction of uniaxial compressive strength of sandstones using petrography-based models, Engineering Geology, 96(1): 141–158.