Degree of water saturation using intelligent method (ANFIS) in one of the hydrocarbon reservoirs in southwestern Iran (North Azadegan oil field)

Authors

1 Ph. D. student, of Mining Engineering, Urmia University, Urmia, Iran

2 Assoc. Prof., Dept., of Mining Engineering, Urmia University, Urmia, Iran

Abstract

Degree of water saturation is one of the key parameters in petroleum geological engineering to calculate the volume of reservoir hydrocarbons and also reduce economic risk in the development of oil fields. The first attempts to estimate the degree of water saturation of the formation were made by Archi in the data of well drilling diagrams in clean sandstone reservoirs, the results of which were generalized as an experimental relation for carbonate reservoirs. In carbonate reservoirs, assuming these parameters to be constant due to severe heterogeneity is associated with a large error. On the other hand, it is not possible to calculate these parameters due to the time and cost and loss of part of the core for the entire length of the well. Artificial intelligence methods are new, low-cost and accurate methods that can indirectly estimate the degree of saturation of the reservoir water in the shortest possible time using well data. Therefore, in this study, using different wells and intelligent method of adaptive neural-fuzzy inference system (ANFIS-FCM), the degree of water saturation in one of the hydrocarbon reservoirs in southwestern Iran (North Azadegan Square) has been indirectly estimated. To use this artificial intelligence method, the database consisted of 2511 well data, which were divided into two parts: training data (1758 data) and test data to evaluate the models (753 data). The results show the very good performance of the adaptive neural-fuzzy inference system (ANFIS-FCM) method of estimating the degree of water saturation. Therefore, the adaptive neural-fuzzy inference system (ANFIS-FCM) model can be used as a powerful, fast and accurate method for indirectly estimating the degree of water saturation in reservoirs where the degree of water saturation is not measured through the core.

Keywords


پاشنه­طلا، م.ه.، جوزانی کهن، گ.، مجدی، ع (1397) مطالعه میکروسکوپی وضعیت سیمان­شدگی سازند مخزنی سروک در میدان آزادگان جنوبی، ماهنامه­ی علمی- ترویجی اکتشاف و تولید نفت و گاز، شماره 15، ص 28-24.
عاقبتی، ر (1387) معرفی یک میدان: طرح توسعه میدان آزادگان، ماهنامه­ی علمی- ترویجی اکتشاف و تولید، شماره 51، ص 6-8.
علیزاده، ب.، سعادتی، ح.، حسینی، س. ح.، گندمی­ثانی، ا. ر (1392) مطالعه نفت مخزن آزادگان در میدان نفتی آزادگان با استفاده از روش کروماتوگرافی گازی، ماهنامه علمی- ترویجی اکتشاف و تولید نفت و گاز، شماره 103.
فضلی، م.، باقری، م (1392) ارزیابی پتروفیزیکی مخازن هیدروکربوری به روش قطعی و احتمالی، انتشارات ستایش، 195 ص.
قلی­پور، س.، کدخدائی، ع.، کمالی، م. ر (1394) تخمین نگار کربن آلی کل با استفاده از داده­های ژئوشیمیایی و پتروفیزیکی توسط شبکه عصبی مصنوعی در میدان نفتی آزادگان، مجله پژوهش نفت، شماره 2-85.
مشایخی، ر.، رضایی­پرتو، ک (1395) ارزیابی پتروفیزیکی و تعیین پارامترهای لیتولوژی، حجم شیل، تخلخل و اشباع آب در سازند سروک در یکی از میادین نفتی واقع در دشت آبادان به روش MRGC، چهارمین کنفرانس بین­المللی پژوهش در مهندسی، علوم و تکنولوژی.
مقصودی، م.، مقیمی، ا.، یمانی، م.، چرخابی، ا. ح.، ایرانمنش، ف (1392) تحلیل وقایع محیطی دشت آزادگان براساس توالی و خصوصیات رسوب­شناسی، پژوهش­های ژئومورفولوژی کمی، سال دوم، شماره1، ص 49-66.
ناصریان اصل، م.، امیری، ا (1393) میدان نفتی آزادگان از دیدگاه زمین­شناسی و ژئوشیمی، کرج، رهام اندیشه، 65ص.
Acharya, C., Mohanty, S., Sukla, L., Misra, V (2006) Prediction of sulphur removal with Acidithiobacillus sp. using artificial neural networks, Ecological modelling, 190 (1): 223-230.
Aghli, Gh., Moussavi-Harami, R., Mortazavi, S., Mohammadian, R (2019) Evaluation of new method for estimation of fracture parameters using conventional petrophysical logs and ANFIS in the carbonate heterogeneous reservoirs, Journal of Petroleum Science and Engineering, Volume 172, January, Pages 1092-1102.
Ahmadi, M. A., Ahmadi, M. R., Hosseini, S. M., Ebadi, M (2014) Connectionist model predicts the porosity and permeability of petroleum reservoirs by means of petro-physical logs: Application of artificial intelligence, Journal of Petroleum Science and Engineering, 123: 183-200.
Ahmadi, M. A., Zhangxing, C (2019) Comparison of machine learning methods for estimating permeability and porosity of oil reservoirs via petro-physical logs, Petroleum, 5 (3): 271-284.
Al-AbdulJabbar, A., Al-Azani, Kh., Elkatatny, S (2020) Estimation of Reservoir Porosity from Drilling Parameters Using Artificial Neural Networks, Petrophysics, 61 (3): 318–330.
Anemangely, M., Ramezanzadeh, A., Amiri, H., Hoseinpour, S. A (2019) Machine learning technique for the prediction of shear wave velocity using petrophysical logs, Journal of Petroleum Science and Engineering, 174: 306-327.
Anifowose, F., Abdulraheem, A (2011) Fuzzy logic-driven and SVM-driven hybrid computational intelligence models applied to oil and gas reservoir characterization, Journal of Natural Gas Science and Engineering, 3: 505-517.
Anifowose, F., Labadin, J., Abdulraheem, A (2015) Improving the prediction of petroleum reservoir characterization with a stacked generalization ensemble model of support vector machines, Applied Soft Computing, 26: 483-496.
Ansari, H. R., Gholami, A (2015) an improved support vector regression model for estimation of saturation pressure of crudoils, Fluid Phase Equilibria, 402: 124-132.
Asoodeh, M., Bagheripour, P (2012) Prediction of compressional, shear, and stoneley wave velocities from conventional well log data using a committee machine with intelligent systems, Rock Mechanics and Rock Engineering45: 45-63.
Bagheripour, P., Gholami, A., Asoodeh, M., Vaezzadeh-Asadi, M (2015) Support vector regression based determination of shear wave velocity, Journal of Petroleum Science and Engineering, 125: 95-99.
Baziar, S., Gafoori, M. M., Pour, M., Mehdi, S., Bidhendi, M. N., Hajiani, R (2015) Toward a Thorough Approach to Predicting Klinkenberg Permeability in a Tight Gas Reservoir: A Comparative Study, Iranian Journal of Oil & Gas Science and Technology, 4: 18-36.
Bezdek, J. C (1973) Fuzzy mathematics in pattern classification. Cornell university, Ithaca.
Demuth, H., Beale, M (1993) Neural network toolbox for use with MATLAB.
Doulati Ardejanii, F., Rooki, R., Jodieri Shokri, B., Eslam Kish, T., Aryafar, A., Tourani, P (2012) Prediction of rare earth elements in neutral alkaline mine drainage from Razi Coal Mine, Golestan Province,  northeast Iran, using general regression neural network, Journal of Environmental Engineering, 139 (6): 896-907.
Eskandari, H., Rezaee, M., Mohammadnia, M (2004) Application of multiple regression and artificial neural network techniques to predict shear wave velocity from wireline log data for a carbonate reservoir South-West Iran, CSEG recorder, 42: 48.
Eskandari, H., Rezaee, M., Mohammadnia, M (2004) Application of multiple regression and artificial neural network techniques to predict shear wave velocity from wireline log data for a carbonate reservoir South-West Iran, CSEG recorder, 42 (48).
FitzGerald, E. M., Bean, C. J., Reilly, R (1999) Fracture-frequency prediction from borehole wireline logs using artificial neural networks, Geophys Prospect, 47: 1031–44.
Flavio, S. A., Gregor, P. E (1999) The velocity-deviation log a tool to predict pore type and permeability trends in carbonate drill holes from sonic and porosity or density logs, Am. Assoc. Pet. Geol. Bull, 83: 450–66.
 Gholami, R., Moradzadeh, A (2012) Support vector regression for prediction of gas reservoirs permeability, Journal of Mining and Environment, 2: 41-52.
Gholami, R., Moradzadeh, A., Maleki, S., Amiri, S., Hanachi, J (2014) Applications of artificial intelligence methods in prediction of permeability in hydrocarbon reservoirs, J Pet Sci Eng, 122: 643-56.
Hagan, M. T., Demuth, H. B., Beale, M. H (1996) Neural network design, Pws Pub. Boston.
Ja’fari, A., Kadkhodaie-Ilkhchi, A., Sharghi, Y., Ghanavati, K (2012) Fracture density estimation from petrophysical log data using the adaptive neuro-fuzzy inference system, J. Geophys, Eng. 9:105–114.
Jang, J. S. R., Sun, C. T., Mizutani, E (1997) Neuro-Fuzzy and Soft Computing A Computional Approach to Learning and Machine Intelligence, Prentice Hall, 640p.
Jayalakshmi, T., Santhakumaran, A (2011) Statistical normalization and back propagation for classification, Int J Comput Theory Eng, 3(1): 1793-8201.
Jorjani, E., Chelgani, S. C., Mesroghli, S (2008) Application of artificial neural networks to predict  chemical desulfurization of Tabas coal, Fuel, 87 (12).
Kadkhodaie Ilkhchi, A., Rezaee, M., Moallemi, S. A (2006) a fuzzy logic approach for estimation of permeability and rock type from conventional well log data: an example from the Kangan reservoir in the Iran Offshore Gas Field, J. Geophys. Eng, 3: 356–369.
Kadkhodaie-Ilkhchi, A., Rezaee, M. R., Rahimpour-Bonab, H., Chehrazi, A (2009) Petrophysical data prediction from seismic attributes using committee fuzzy inference system, Computers & Geosciences, 35: 2314-2330.
Kosko, B (1992) Neural Networks and Fuzzy Systems. A Dynamical Approach to Machine Intelligence, Prentice Hall, Englewood Cliffs, NJ, 449p.
MATLAB user’s guide (2006) Fuzzy logic Toolbox, by the math works Inc.
Mehrabian, A. R., Lucas, C (2006) A novel numerical optimization algorithm inspired from weed colonization, Ecological informatics, 1 (4): 355-366.
Moatazedian, I., Rahimpour-Bonab, H., Kadkhodaie-Ilkhchi, A., Rajoli, M (2011) Prediction of shear and Compressional Wave Velocities from petrophysical data utilizing genetic algorithms technique: A case study in Hendijan and Abuzar fields located in Persian Gulf, Geopersia, 1: 1-17.
Monjezi, M., Dehghani, H (2008) Evaluation of effect of blasting pattern parameters on back break using neural networks, International Journal of Rock Mechanics and Mining Sciences, 45 (8): 1446-1453.
Nava, P., Taylor, J (1996) the Optimization of Neural Network Performance through Incorporation of Fuzzy Theory, In: 11th Conference on Systems Engineering, 897-901.
Nazari, S., Kuzma, H. A., Rector III, J. W (2011) Predicting permeability from well log data and core measurements using support vector machines, SEG Annual Meeting, Society of Exploration Geophysicists.
Nouri Taleghani, M., Saffarzadeh, S., Karimi Khaledi, M., Zargar, Gh (2013) Development of an Intelligent System to Synthesize Petrophysical Well Logs, Iranian Journal of Oil & Gas Science and Technology, 2 (3): 11-24.
Oden, C. O., LoCoco, J. J (2000) Variable Frequency Monopole-Dipole Sonic Logging for Mechanical and Hydrogeologic parameters, Conference Proceedings of the Annual Meeting of Environmental and Engineering Geophysical Society, Denver, CO.
Ohen, H. A (2003) Calibrated wire-line Mechanical Rock Properties Model for Predicting and preventing wellbore Collapse and Sanding, SPE, European Formation Damage Conference.
Okon, A. N., Adewole S. E., Uguma, E. M (2020) artificial neural network model for reservoir petrophysical properties: porosity, permeability and water aturation prediction, Modeling Earth Systems and Environment.
Rajabi, M., Bohloli, B., Ahangar, E. G (2010) Intelligent approaches for prediction of compressional, shear and Stoneley wave velocities from conventional well log data: A case study from the Sarvak carbonate reservoir in the Abadan Plain (Southwestern Iran), Computers & Geosciences, 36: 647-664.
Rezaee, M. R., Kadkhodaie-Ilkhchi, A., Alizadeh, P. M (2007) Intelligent approaches for the synthesis of petrophysical logs, Journal of Geophysics and Engineering, 5 (12).
Saemi, M., Ahmadi, M., Yazdian Varjani, A (2007) Design of neural networks using genetic algorithm for the permeability estimation of the reservoir, Journal of Petroleum Science and Engineering, 59: 97–105.
Schlumberger (1989) Schlumberger Log Interpretation Principles / Applications, July, Hoston, Texas.
Sebtosheikh, M. A., Motafakkerfard, R., Riahi, M. A., Moradi, S (2015) Separating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir, Iranian Journal of Oil & Gas Science and Technology, 4: 1-14.
Specht, D. F (1991) A general regression neural network, IEEE Transactions on Neural Networks, 2 (6): 568-576.
Srinivasan, K., Fisher, D (1995) Machine Learning Approaches to Estimating Software Development Effort, IEEE Transactions on Software Engineering, 21(2): 126–137.
Tariq, Z., Mahmoud, M., Abdulraheem, A (2019) An Artificial Intelligence Approach to Predict the Water Saturation in Carbonate Reservoir Rocks, Paper presented at the SPE Annual Technical Conference and Exhibition, Calgary, Alberta, Canada.
Yue, Y., Wang, J (2007) SVM method for predicting the thickness of sandstone, Applied Geophysics, 4: 276-281.
Zoveidavianpoor, M., Samsuri, A., Shadizadeh, S.R (2013) Adaptive neuro fuzzy inference system for compressional wave velocity prediction in a carbonate reservoir, Journal of Applied Geophysics, 89: 96-107.