Evaluation of Intelligent Model in Estimating Electrical Conductivity in Groundwater (Case study: Rayen plain)

Authors

1 Ph. D. student, of Mining Engineering, Urmia University, Urmia, Iran

2 M. Sc., of in environmental geology, Shahid Bahonar University of Kerman, Kerman, Iran

3 Ph. D. student, of in environmental geology, Urmia University, Urmia, Iran

4 Assoc. Prof., Dept., of Geology, Shahid Bahonar University of Kerman, Kerman, Iran

5 Assoc. Prof., Dept., of Mining Engineering, Urmia University, Urmia

Abstract

In this study, effectiveness of the intelligent method of ANFIS-FCM adaptive fuzzy neural inference system to predict the electrical conductivity in groundwater due to physical and chemical parameters in the Rayen plain was evaluated. To achieve this, 29 water samples were taken from wells and springs across the plain and the data were chemically analyzed in the laboratory. Descriptive statistics of data and the correlation matrix of the studied parameters were obtained using SPSS software. By forming a correlation matrix, it was found that the potassium (K+), sodium (Na+), calcium (Ca2+), magnesium (Mg2+), chlorine (Cl-), sulfate (SO42-), total soluble solids (TDS), total hardness (TH), compared to other available parameters, have the highest correlation with electrical conductivity (EC). Therefore, the model inputs included the mentioned parameters and electrical conductivity was also selected as the output according to the research purpose. After standardization, the data were entered into MATLAB environment and the electrical conductivity of groundwater was predicted using ANFIS-FCM method. In this method, 70% of the data (20 samples) were selected as the training data set and 30% of the data (9 samples) for the test data set. For the training data set of ANFIS-FCM model, R2 and RMSE values were 0.99994, 0.0001569, respectively, and also for test data set of ANFIS-FCM model, 0.9844 and 0.041652 were resulted for R2 and RMSE, respectively. Using the results of this model, it was found that the estimated electrical conductivity in the study area had very good accuracy and high correlation with the measured values. As a result, the ANFIS-FCM intelligent method is an effective, efficient and accurate method to estimate the electrical conductivity of water.

Keywords


حجت، آ.، رنجبر، ح (1390) اصول ژئوالکتریک کاربردی، موسسه انتشارات ستایش.
حزباوی، ع.، دهقانی، ر (1398) ارزیابی مدل­های هوشمند در تخمین هدایت­الکتریکی آب­های زیرزمینی (مطالعه موردی: دشت مازندران)، نشریه علوم و تکنولوژی محیط­زیست، دوره 21، شماره 1، ص 87-98.
دولت­کردستانی، م.، نوحه­گر، ا.، جانی­زاده، س (1396) ارزیابی چند مدل هوش مصنوعی برای پیش­بینی کیفیت آب زیرزمینی (مطالعه موردی: دشت گرو)، نشریه مهندسی اکوسیستم بیابان، سال ششم، شماره 17، ص 42-27.
سعیدی­رضوی، ب.، عرب، ع (1397) پیش­بینی سطح آب زیرزمینی با استفاده از مدل­های منطق فازی، شبکه عصبی و سری زمانی، مجله هیدروژئولوژی، سال سوم، شماره 2، ص 69-81.
شرکت سهامی آب منطقه­ای کرمان (۱۳۸۲) مطالعات کمی و  هیدورژئولوژی)، جلد سوم. 200 ص.
شیرانی، ز.، عباس­پور، م.، جاوید، ا. ح.، تقوی، ل (1392) ارزیابی منابع آلودگی آب­های زیرزمینی در محیط شهری (مطالعه موردی: منطقه 14 شهرداری تهران)، فصلنامه انسان و محیط­زیست، شماره 24، ص 1-17.
نظری، ح.، تقوی، ب.، حاجی­زاده، ف (1400) پیش‌بینی هدایت‌الکتریکی آب زیرزمینی با استفاده از روش سیستم استنتاج عصبی- فازی تطبیقی (ANFIS) مطالعه موردی: دشت‌های آذرشهر، عجب شیرو مراغه، نشریه یافته­های نوین زمین­شناسی کاربردی، دوره 15، شماره 30، ص 17-32.
نظری، ح.، دهقانی، م.، حاجی­زاده، ف.، عباس­نژاد، ا (1400) کاربرد روش ANFIS-FCM در اکتشافات معادن گچ­شوره مطالعه موردی: معدن گچ­شوره انار، نشریه یافته­های نوین زمین­شناسی کاربردی، دوره 15، شماره 29، ص 93-107.
نظری، م (1390) بررسی منشأ و پراکندگی آرسنیک در آب­های زیرزمینی دشت راین و اثرات بالقوه زیست­محیطی آن، پایان­نامه کارشناسی­ارشد. دانشگاه شهید باهنر کرمان، 207 ص.
Abbasi, P., Mehrdadi, N., Nabi, R., Zare Abyaneh, H (2013) Application of Artificial Neural Network to Predict Total Dissolved Solids Variations in Groundwater of Tehran Plain, Iran. International Journal of Environment and Sustainability, 2(1): 10-20.
Akbarzadeh, S., Arof, A. K., Ramesh, S., Khanmirzaei, M. H., Nor, R. M (2014) Prediction of Conductivity by Adaptive Neuro-Fuzzy Model, PLoS ONE, 9(3): e92241.
 Babiker, S., Mohamed, A., Tetsuya, H., Kikuo, K (2005) A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Sci Total Environ, 354: 127–140.
Banerjee, P., Singh, V. S., Chattopadhyay, K., Chandra, P. C., Singh, B (2011) Artificial neural network model as a potential alternative for groundwater salinity forecasting. Journal of Hydrology, 398(4): 212–220.
Bazdar, H., Fattahi, H., Ghadim, F (2015) Hybrid ANN with Invasive Weed Optimization Algorithm, a New Technique for Prediction of Gold and Silver in Zarshuran Gold Deposit, Iran. M.Sc. Thesis, Arak University of Technology, Arak, Iran, 120 pp.
Bezdek, J. C (1973) Fuzzy mathematics in pattern classification. Cornell university, Ithaca.
Derakhshan, Sh., Gholami, V., Darvari, Z (2013) Simulation of groundwater salinity using artificial neural network (ANN) on the coast of Mazandaran province. Irrigation Science and Engineering, 36(2): 61-70. (In Persian).
Emamgholizadeh, S., Moslemi, Kh., Karami, Gh (2014) Prediction the Groundwater Level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS). European Water Resources Association (EWRA), 28(15): 5433-5446.
 Faithful, J., Finlayson, W (2005) Water quality assessment for sustainable agriculture in the Wet Tropics-A community assisted approach. Marine pollution Bulletin, 51(1-4): 99-112.
Gholami, R., Moradzadeh, A., Maleki, S., Amiri, S., Hanachi, J (2014) Applications of artificial intelligence methods in prediction of permeability in hydrocarbon reservoirs. J Pet Sci Eng, 122: 643-56.
Gokceoglu, C., Zorlu, K (2004) A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Engineering Applications of Artificial Intelligence, 17: 61–72.
Isazadeh, M., Arabzadeh, R., Darbandi, S (2016) Performance Evaluation of Geostatistical Methods and Artificial Neural Network in Estimation of Aquifer Quality Parameters (Case Study: Qorveh Dehghan Plain). J. Water and Soil Sci, 20(77): 197-210 (In Persian).
Jang, JSR (1993) ANFIS: Adaptive-network-based fuzzy inference system. IEEE T Syst Man Cyb, 23(3): 665-685.
Jang, JSR., Sun, CT., Mizutani, E (1997) Neuro-Fuzzy and Soft Computing A Computional Approach to Learning and Machine Intelligence. Prentice Hall, 640p.
Jayalakshmi, T., Santhakumaran, A (2011) Statistical normalization and back propagation for classification. Int J Comput Theory Eng, 3(1): 1793-8201.
Kord, M., Asghari Moghadam, A., Nakhaei, M (2015) Quantitative modeling of nitrate distribution in Ardabil plain aquifer using fuzzy logic. Environmental Studies, 41(1): 67-89 (In Persian).
Kosko, B (1992) Neural Networks and Fuzzy Systems. A Dynamical Approach to Machine Intelligence, Prentice Hall, Englewood Cliffs, NJ, 449p.
MATLAB user’s guide (2006) Fuzzy logic Toolbox, by the math works Inc.
Moosavi, V., Vafakhah, M., Shirmohammadi, B., Behnia, N (2013) A Wavelet-ANFIS Hybrid Model for Groundwater Level Forecasting for Different Prediction Periods. Water Resources Management journal, 27(5): 1301-1321.
Nadiri, A., Chitsazan, N., Tsai, FTC., Asghari Moghaddam, A (2014) Bayesian artificial intelligence model averaging for hydraulic conductivity estimation. Journal of Hydrologic Engineering, 19(3): 520-532.
Nasr, M., Farouk Zahran, H (2014) Using of pH as a tool to predict salinity of groundwater for irrigation purpose using artificial neural network. The Egyptian Journal of Aquatic Researc, 40(2): 111-115.
Nava, P., Taylor, J (1996) The Optimization of Neural Network Performance through Incorporation of Fuzzy Theory. In: 11th Conference on Systems Engineering, 897-901.
Nayak, P. C., Sudheer, K. P., Rangan, D. M., Ramasastri, K. S (2004) A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291: 52–66.
Nourani, V., Alami, M. T., Vousoughi, F. D (2016) Self-organizing map clustering technique for ANN-based spatiotemporal modeling of groundwater quality parameters. Journal of Hydro informatics, 18(2): 288-309.
Srinivasan, K., Fisher, D (1995) Machine Learning Approaches to Estimating Software Development Effort. IEEE Transactions on Software Engineering, 21(2): 126–137.
Sugeno, M (1985) Industrial applications of fuzzy control. Elsevier Science Inc.
Tamadoni Konari, S (2012) Intelligent prediction of groundwater salinity using artificial neural network. Second Conference on Environmental Planning and Management. Tehran. Iran. (In Persian).
Tutmez, B., Hatipoglu, Z., Kaymak, U (2006) Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system. Computers & Geosciences, 32: 421–433.
Wu, C., Hao, H., Zhou, Y (1999) Fuzzy-random probabilistic analysis of rock mass responses to explosive loads. Computers and Geotechnics, 25: 205–25.
Zare Abyaneh, H., Bayat, M., Akhavan, S., Mohamadi, M (2011) Estimation of nitrate in groundwater Hamedan-Bahar plain using artificial neural network and data separation effect on prediction accuracy. Journal of Ecology, 37(58): 129-140. (In Persian).
Zhai, J., Zhou, J., Zhang, L., Zhao, J., Hong, W (2009) The dynamic behavioral model of RF power amplifiers with the modified ANFIS. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 57 (1): 27-35.