Study the Effect of Geological formation On the Drinking Quality and Agriculture Water Resources of River Ardak, Mashhad

Authors

1 Assist. Prof., Dept., of Geology, Islamic Azad University, Mashhad Branch, Mashhad, Iran

2 M. Sc., student. of Geology, Islamic Azad University, Mashhad Branch, Mashhad, Iran

Abstract

Ardak Watershed, located in khorasan Razavi province and 70 km from Mashhad Causes a new source of dirinking water production and agriculture in Mashhad and its sububs and 1s located in terms of structural zoning, in the Kopeh Dagh. Given the water crisis and the importance of access to suitable and potable quality water in the country. Therefore, in the present study, it has been studied that it is effective in geological formation in the quality of water resources in the region. To achieve this goal,11 water samples were taken from river and dom and physical parameters such as, PH, TDS, EC and TH were measured in situ using multimeter. The average TDS is 185 meq/l and average EC is 271 microzimens/sec and average PH is 7.89 and average TH is776 mg/l in Ardak river is good condition in terms of drinking and agriculture. To the piper diagram, most of water in this region was a part of the Calcic and bicarbonate type facies, and in some examples, the sulfate type, which is associated with calcareous Mozdoran formation, marl limestone Tirgan formation and marl, sandstone, gypsum Shourigeh formation. Scholler diagram showed that water needed in the region, despite being affected by geological formation is suitable for drinking and it is suitable for agriculture and a little sality. Statistical studies showed that the greatest impact on the chemical water content of Ardak river is affected by the structure of Mozdoran3 and then formation Tirgan and Shourijeh.This result canbe confirmed since the largest area of the basin is occupied by Mozdoran3 formation and its lithology is composed of carbonate rocks.

Keywords


ابراهیمی، ا.، امین، م.، هاشمی، ح.، فولادی فرد، ر.، وحید دستجردی، م (1389) بررسی کیفیت شیمیایی آب زیرزمینی منطقه راوند، نشریه تحقیقات نظام سلامت، دوره6، شماره ویژه نامه، ص 918-926.
پیران قرنی نمین، س.، جاوید، ا.، قدوسی، ا (1397) بررسی تاثیر سازندهای زمین­شناسی بر روی کیفیت منابع آب زیرزمینی (مطالعه موردی دشت اردبیل)، نشریه علوم و تکنولوژی محیط زیست، دوره20، شماره3.
ترشیزیان، ح.، موسوی­حرمی، ر.، نجفی، م (1379) مطالعه زمین­ریخت­شناسی کارست و بررسی پتانسیل آب در سازندهای سخت گستره مشهد- چناران، چهارمین همایش انجمن زمین­شناسی ایران.
جوانبخت، م.، اسدی، و.، دبیری، ر (1399) ارزیابی ویژگی­های هیدروژئوشیمیایی و روند تکاملی آب­های زیرزمینی دشت جاجرم، شمال شرق ایران، نشریه محیط­زیست و مهندسی آب، دوره 6، شماره 3، ص 206-218.
حیدری، م.، مصداقی­نیا، ا.، میرزاده، ا.، یونسیان، م.، ندافی، م.، محوی،ک (1390) بررسی کیفیت میکروبی از نوشیدن آب در روستاهای شهرستان کاشان و نقش روستایی شرکت آب و فاضلاب در آن، نشریه سلامت سیستم، جلد 6، ص 898-907.
قبادی، م.، عثمان­پور، ا.، عباسی، ع (1399) تاثیر سازندهای زمین­شناسی بر کیفیت شرب منابع آب زیرزمینی مجتمع روستایی آرندان سنندج، نشریه محیط­زیست و مهندسی آب، دوره 6، شماره2، ص173-184.
مجدی، ح.، غیبی، ل.، سلطانی، ط (1394) بررسی کیفیت میکروبی و فیزیکوشیمیایی آب شرب روستاهای شهرستان تکاب در استان آذربایجان غربی درسال 92، نشریه دانشگاه علوم پزشکی رفسنجان، دوره14، شماره8، ص631-642.
محمدزاده، ف.، اختصاصی، م.، حسینی، ز (1396) بررسی تاثیر سازندهای زمین­شناسی برکیفیت آب­های زیرزمینی با کاربرد منطق بولین (مطالعه موردی حوضه آبخیز دشت بجستان)، نشریه مهندسی و مدیریت آبخیز، دوره 6، شماره 1، ص 11-21.
Akter, M., T. Sikder, T., Ullah, A. K. M. A (2014) Water Quality assessment of an industrialzone polluted aquatic body in Dhaka, Bangladesh, Am. J. Environ. Protect, 3232–237.
Alper B.and Orthan, G (2017) Effect of geogenic factors on water quality and its relation to human health around Mount Ida, Turkey. Water, 9(1): 66.
Anonymous (2008) WHO guidelines for drinking water quality secondaddendum to third edition. Geneva World Health Organization. Available: https://www.who.int/water_sanitation_health/dwq/secondaddendum. 200081119.pdf.
Anonymous (2015) Institute of Standards and Industrial Research of Iran, Drinking water chemical nd Physical properties. National Iranian Standard No 1053 (in Persian).
Berberian, F. M., King, G. C )1981( Toward a pale geography and tectonic evolution of Iran, Canadian Journal of Earth Sciences, 18(2): 210-265.
Bouwer, H (1978) Groundwater Hydrology, McGraw-Hill Book, New York, 480pp.
Cohen, A. S (2003) Paleolimnology: the history and evolution of lake systems. Oxford University press, U. K.
Durov, S. A (1948) Klassifikacija prirodnych vodi graficeskoje izobrazenie ich sostava [Classification of natural waters and graphic representation of their composition]: Doklady Ak. Nauk SSSR, 59 (1): 87-90.
Erfanian Kaseb, H., Torshizian, H. A., Jahani, D., Javanbakht, M., Kohansal Ghadimvand, N (2020) Studying Evolutionary Processes of Petergan Playa Brines in South Khorasan, East of Iran. [in Persian]
Eugster, H. P (1980) Geochemistry of evaporitic lacustrine deposits. Annual Rev. Earth Planet. Sci, 8: 35-63.
Eugester and Haridel, A (1978) Saline lakes, In Lerman A. (Ed), Lakes chemistry, Geology and Physics: Springer Verlage, 237-293.  
Gipperth, L., & Elmgren, R (2005) Adaptive coastal planning and the European Union'swater framework directive: A Swedish perspective. AMBIO, 34(2): 157–162.
Gu, Q., Li, J., Deng, J (2015) Eco-environmental vulnerability assessment for large drinking water resource: a case study of Qiandao Lake Area, China. Front. Earth Sci. 9: 578–589.
Guler, C. Thyne, G. D., McCray, J. E., Turner, A. K (2002) Evaluation of graphical and multivariate statistical method for classification of water chemistry data. Hydrogeol, 10(4): 455–474.
Jones, B., F. and Deocampo, D. M (2014) Geochemistry of saline lakes. Treatise Geochem, 7: 437-469.
Madhav, S., Ahamad, A., Kumar, A (2018) Geochemical assessment of groundwater quality for its suitability for drinking and irrigation purpose in rural areas of Sant Ravidas Nagar (Bhadohi), Uttar Pradesh. Geology, Ecology, and Landscapes, 2: 127–136.
Malina, J. F (1996) Water resources handbook‏. Mc GrawHill. NewYork, 8:1-49.
McIntyre, N. R., & Wheater, H. S (2004) A tool for risk-based management of surface water quality. Environmental Modeling & Software, 19: 1131–1140.
 Piper, A. M (1944) A graphical procedure in the geochemical interpretation of water analysis. Am Geophys Union Trans, 25: 914–923.
Qiao, X., Zhao, C., Shao, Q., Hassan, M (2018) Structural characterization of corn stover lignin after hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment. Energy & Fuels, 32(5): 6022–6030.
Scholler, H (1962) Lex souterraines, Masson, Paris, 642pp.
Sepehr, M (2006) Managment of supply drinking water in rural areas. John Wiley and Sons, 706: 14404-22.
White, K. and Drake, N (1993) Mapping the disterbiution and abudance of gypsum in southcenteral Tunisia from landsat Thematic Mapper data. Zeits cherif Geomorphol, 37: 309-325.
Zhao, C., Qiao, X., Shao, Q., Hassan, M., Ma, Z., Yao, L (2020) Synergistic effect of hydrogen peroxide and ammonia on lignin. Ind Crop Prod, 146: 112-177.