Monitoring of groundwater quality parameters using adaptive neural-fuzzy inference system (ANFIS) method (Case study: Ardabil plain)

Authors

1 Ph. D. student, of Mining Engineering, Urmia University, Urmia, Iran

2 Ph. D. student, of in environmental geology, Urmia University, Urmia, Iran

3 Assist. Prof., Dept., of Geology, Urmia University, Urmia, Iran

4 Assist. Prof., Dept., of Soil Science, Urmia University, Urmia, Iran

5 Assoc. Prof., Dept., of Mining Engineering, Urmia University, Urmia

Abstract

Proper modeling of groundwater quality is an important planning and decision-making tool in water resources management. In this study, in order to model the changes in groundwater quality variables in Ardabil plain, data from 60 wells in May 2013 were used. The data were chemically analyzed in the University Jihad Laboratory by West Azerbaijan Province. Descriptive statistics of data and the correlation matrix of the studied parameters were obtained using SPSS software. The qualitative parameters studied in this paper are: EC, TDS and TH. After standardization, the data were entered into MATLAB environment and groundwater parameters were predicted using ANFIS-FCM method. In this method, 70% of the data (42 samples) for the training data set and 30% of the data (18 samples) for the test data set were randomly selected. For ANFIS-FCM model training data set, EC values (R2 = 0.9142, MSE = 0.009391), TDS (R2 = 0.9703, MSE = 0.00515), TH (R2 = 0.9741, 0.00388 = MSE values were also obtained for the ANFIS-FCM model test data set (EC = 0.987, R2 = 0.003383, MSE), TDS (R2 = 0.8381, MSE = 0.00510), TH (= 0.625). R2 (MSE = 0.072) was obtained. Using the results obtained from this model, it was found that the estimated groundwater parameters in the study area had very good accuracy and high correlation with the measured values. As a result, the ANFIS-FCM intelligent method is an effective, efficient and accurate method for estimating the physical and chemical parameters of water.

Keywords


حزباوی، ع.، دهقانی، ر (1398) ارزیابی مدل­های هوشمند در تخمین هدایت­الکتریکی آب­های زیرزمینی (مطالعه موردی: دشت مازندران)، علوم و تکنولوژی محیط زیست، دوره21، شماره1.
سعیدی رضوی، ب.، عرب، ع (1397) پیش­بینی سطح آب زیرزمینی با استفاده از مدل­های منطق فازی، شبکه عصبی و سری زمانی، مجله هیدروژئولوژی، سال سوم، شماره 2، ص 69-81.
شعبانی، م (1387) تعیین مناسب­ترین روش زمین آمار در تهیه­ی نقشه­ی تغییرات pH و TDS آب­های زیرزمینی دشت ارسنجان، مجله ی مهندسی آب، سال اول، ص 47-58.
فلاح، س.، قبادی­نیا، م.، شکرگزار دارابی، م.، قربانی دشتکی، ش (1391) بررسی پایداری منابع آب زیرزمینی دشت داراب استان فارس، مجله پژوهش آب در کشاورزی، جلد 26، شماره 2، ض 161 - 172.
نظری، ح.، تقوی، ب.، حاجی­زاده، ف (1399) پیش‌بینی هدایت‌الکتریکی آب زیرزمینی با استفاده از روش سیستم استنتاج عصبی- فازی تطبیقی (ANFIS) مطالعه موردی: دشت‌های آذرشهر، عجب­شیر و مراغه، نشریه یافته­های نوین زمین­شناسی کاربردی، مقالات آماده انتشار.
نظری، ح.، دهقانی، م.، حاجی­زاده، ف.، عباس­نژاد، ا (1399) کاربرد روش ANFIS-FCM در اکتشافات معادن گچ­شوره مطالعه موردی: معدن گچ­شوره انار، دو نشریه یافته­های نوین زمین­شناسی کاربردی، مقالات آماده انتشار.
Akbarzadeh, S., Arof, A.K., Ramesh, S., Khanmirzaei, M. H., Nor, R. M (2014) Prediction of Conductivity by Adaptive Neuro-Fuzzy Model, PLoS ONE, 9(3): e92241.
Banerjee, P., Singh, V. S., Chattopadhyay, K., Chandra, P. C., Singh, B (2011) Artificial neural network model as a potential alternative for groundwater salinity forecasting. Journal of Hydrology, 398(4): 212–220.
Bezdek, JC (1973) Fuzzy mathematics in pattern classification. Cornell university, Ithaca.
Chowdhury, M., Alouani, A., Hossain, F (2010) Comparison of ordinary kriging and artificial neural network for spatial mapping of arsenic contamination of groundwater. Stochastic Environ. Res. and Risk Assess, 24(1): 1-7.
Dolati Kordestani, M., Nohegar, A., Janizadeh, S (2018) Assessment of some Artificial Intelligence (AI)-based models for groundwater quality prediction (case study: Garoo plain). Desert Ecosystem Engineering Journal, 6(17): 27-42.
Emamgholizadeh, S., Moslemi, Kh., Karami, Gh (2014) Prediction the Groundwater Level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS). European Water Resources Association (EWRA), 28(15): 5433-5446.
Gholami, R., Moradzadeh, A., Maleki, S., Amiri, S., Hanachi, J (2014) Applications of artificial intelligence methods in prediction of permeability in hydrocarbon reservoirs. J Pet Sci Eng, 122: 643-56.
Huiqun, M., Ling, L (2008) Water quality assessment using artificial neural network. In International Conference on Computer Science and Software Engineering 5-13 December, USA.
Isazadeh, M., Arabzadeh, R., Darbandi, S (2016) Performance Evaluation of Geostatistical Methods and Artificial Neural Network in Estimation of Aquifer Quality Parameters (Case Study: Qorveh Dehghan Plain). J. Water and Soil Sci, 20(77): 197-210 (In Persian).
Jang, JSR (1993) ANFIS: Adaptive-network-based fuzzy inference system. IEEE T Syst Man Cyb, 23(3): 665-685.
Jang, JSR., Sun, CT., Mizutani, E (1997) Neuro-Fuzzy and Soft Computing A Computional Approach to Learning and Machine Intelligence. Prentice Hall, 640p.
Jayalakshmi, T., Santhakumaran, A (2011) Statistical normalization and back propagation for classification. Int J Comput Theory Eng, 3 (1): 1793-8201.
 Kadam, D. M., Nain, L., Samuel, D. V. K., Pandey, A. K (2005) Influence of different treatments on dehydrated cauliflower quality. International Journal of Food Science & Technology, 40(8): 849-856.
Khadam, I. M., Kaluarachchi, J. J (2006) Water quality modeling under hydrologic variability and parameter uncertainty using erosion-scaled export coefficients. Journal of Hydrology, 330 (1): 354-67.
Khodai, K., Shahsavari, A. A., Etebari, B) 2006) Vulnerability assessment Jovin aquifer with DRASTIC and GODS methods. Iranian Journal of Geology, 2(4): 73-87 (In Persian).
Kosko, B (1992) Neural Networks and Fuzzy Systems. A Dynamical Approach to Machine Intelligence, Prentice Hall, Englewood Cliffs, NJ, 449p.
Madan, K. J., Kamii, Y., Chikamori, K (2008) Cost-effective approaches for sustainable groundwater management in alluvial aquifer system. Water Resources Management, 23(2): 219-233.
MATLAB user’s guide (2006) Fuzzy logic Toolbox, by the math works Inc.
Mirzavand, M., Ghasemiyeh, H., Sadatinejad, SJ., Akbari, M (2015) Simulation of changes in groundwater quality using artificial neural network (case study: Kashan aquifer). Journal of Iranian Natural Resource, 68 (1): 159-171 (In Persian).
Moosavi, V., Vafakhah, M., Shirmohammadi, B., Behnia, N (2013) A Wavelet-ANFIS Hybrid Model for Groundwater Level Forecasting for Different Prediction Periods. Water Resources Management journal, 27(5): 1301-1321.
Nadiri, A., Chitsazan, N., Tsai, FTC., Asghari Moghaddam, A (2014) Bayesian artificial intelligence model averaging for hydraulic conductivity estimation. Journal of Hydrologic Engineering, 19(3): 520-532.
Nasr, M., Farouk Zahran, H (2014) Using of pH as a tool to predict salinity of groundwater for irrigation purpose using artificial neural network. The Egyptian Journal of Aquatic Researc, 40(2): 111-115.
Nava, P., Taylor, J (1996) The Optimization of Neural Network Performance through Incorporation of Fuzzy Theory. In: 11th Conference on Systems Engineering, 897-901.
Nourani, V., Alami, MT., Vousoughi, FD (2016) Self-organizing map clustering technique for ANN-based spatiotemporal modeling of groundwater quality parameters. Journal of Hydro informatics, 18(2): 288-309.
Srinivasan, K., Fisher, D (1995) Machine Learning Approaches to Estimating Software Development Effort. IEEE Transactions on Software Engineering, 21(2): 126–137.
Zare Abyaneh, H., Bayat, M., Akhavan, S., Mohamadi, M (2011) Estimation of nitrate in groundwater Hamedan-Bahar plain using artificial neural network and data separation effect on prediction accuracy. Journal of Ecology, 37(58): 129-140 (In Persian).