The effect of climate change on surface and groundwater resources in Rozeh Tea Plain

Authors

Abstract

Freshwater is a vulnerable, limited, and vital resource. Today, the increasing global population and declining water resources are one of the most important challenges facing mankind. Water resources can directly affect socio-economic growth and development, they can serve as the foundation for development activities.One of the most important issues of the current century is the issue of global warming, which is exacerbated by the impact of greenhouse gases and is expected to cause changes in climate variables. The purpose of this study was to investigate the changes in surface water flow and groundwater level in the Razavachai plain of West Azarbaijan province. Accordingly, IHACRES runoff rainfall model and artificial neural network were used. For this purpose, precipitation data, mean temperature, surface water flow of Rozhay-Chai River and groundwater level of the region were used. In the present study, using the ACCESS1_0 model, the fifth report under climate scenarios 4.5 and 8.5, temperature and precipitation variations in two periods (2020–2052), (2053–2085) were investigated. The results showed that in the region the temperature changes under RCP8.5 scenario were higher than the RCP4.5 scenario and the precipitation decreased in the expected months. The rainfall-runoff model performed better in predicting the flow of the Rozhachai River in the base period than in the next period and showed a correlation coefficient greater than 0.5. The model performed better in baseline prediction of groundwater level with artificial neural network. Finally, in the distant future, the effects of greenhouse gases have a stronger signal and increase temperatures and reduce precipitation.

Keywords


جعفرپور، ش.، و کانونی، ا (1394) سناریوهای تغییر اقلیم در گزارش پنجم هیات بین­الدول تغییر اقلیم و مقایسه آن با گزارش قبلی، دومین همایش ملی صیانت از منابع طبیعی و محیط­زیست، اردبیل دانشگاه محقق اردبیلی.
صیاحی، ث.، شهبازی، ع.، و خادمی، خ (1396) پیش­بینی اثر تغییر اقلیم بر رواناب ماهانه حوضه دز با استفاده از مدل IHACRES. فصلنامه تخصصی علوم و مهندسی آب، دوره 15، شماره 7، ص 7-18.
قربانی، خ.، سهرابیان، ا.، سالاری جزی، م.، و عبدالحسینی، م (1395) پیش­بینی اثر تغییر اقلیم بر روند دبی ماهانه رودخانه با بکار بردن مدل هیدرولوژیکی IHACRES (مطالعه موردی: حوضه آبریز گالیکش). حفاظت منابع آب و خاک، دوره 4، شماره 5، ص 19-34.
ضرغامی، م.، حسن­زاده، ی.، بابائیان، ا.، و کنعانی، ر (1389) مطالعه تغییر اقلیم و اثرات آن بر خشکسالی استان آذربایجان شرقی. نخستین کنفرانس پژوهش­های کاربردی منابع آب.
کمال، ع. ر.، مساح بوانی، ع.ر.، و گودرزی م. ر (1388) ارزیابی اثرات هیدرولوژی اقلیم بر حوضه قره­سو. دومین همایش ملی سدسازی.
شرکت آب منطقه­ای آذربایجان غربی (2012b) مطالعات به روزرسانی موجودی منابع آب، مناطق مطالعه حوضه دریاچه ارومیه، منتهی به سال­های 2011-2012، جلد5.
شرکت حفاری آب نوین ارومیه (2006) اکتشاف و بهره­برداری از سیستم ثبت زمین­شناسی، امور آب ارومیه.
Mateus, M. C., and Tullos, D (2016) Reliability, sensitivity, and vulnerability of reservoir operations under climate change. Journal of Water Resources Planning and Management, 143(4): p. 04016085.
Kaveh, A (1995) Structural Mechanics: Graph and Matrix Methods, Research Studies Press (John Wiley), Exeter, U.K., 1992 (first edition), 1995 (second edition), 2004 (third edition).
Kalteh, A. M (2013) Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform, Computers &Geosciences, 54: 1-8.
IPCC (2001) Climate change. The science of climate change. Contribution of working group I to the second assessment report of the intergovernmental panel on climate change. Eds. Houghton, J. T., Filho, L.G.M., Callander, B.A., Harris, N., Attenberg, A. and Maskell K (2001) Cambridge University Press, Cambridge, 572p.
Doll, P., Hoffmann-Dobreva, H., Portmanna, F. T., Siebertb, S., Eickerc, A., Rodell, M (2012) Impact of water withdrawals from groundwater and surface water on continental water storage variations. Journal of Geodynamics, 59 (60): 143–156.
Bell, A., Zhu, T., Xie, H., Ringler, C (2014) Climate-water interactions-Challenges for improved representation in integrated assessment models. Energy Economics, 46: 510-521.
IPCC (2001) Technical summary. In: Climate change: Impacts, adaptations and mitigation of climate change: scientific–technical analyses, eds. Watson, R. T., Zinyowera M. C. and Moss R. H., contribution of working group to the second assessment report of the intergovernmental panel on climate change. Cambridge university press, Cambridge,1-53.
Erturk, A., Ekdal, A., Gürel, M., Karakaya, N., Guzel, C., and Gönenç, E (2014) Evaluating the impact of climate change on groundwater resources in a small Mediterranean watershed. Science of the Total Environment, 499: 437-447.
IPCC (2007) Climate Change 6007: Impacts, Adaptation, and Vulnerability. Exit EPA Disclaimer Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. In: M. L. Parry, et al (eds). Cambridge Univ. Press, Cambridge, UK. 676p.
IPCC (2014) Summary for policymakers. In: Climate Change 6014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C. B., V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, and L. L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1-36.
Ouyang, F., Zhu, Y., Fu, G., Lü, H., Zhang, A., Yu, Z., Chen, X (2015) Impacts of climate change under CMIP5 RCP scenarios on streamflow in the Huangnizhuang catchment. Stochastic Environmental Research and risk assessment, 66(7): 1751-1765.
Sayadi, A., Beydokhti, N. T., Najarchi, M., Najafizadeh, M. M (2019) Investigation into the Effects of Climatic Change on Temperature, Rainfall, and Runoff of the Doroudzan Catchment, Iran, Using the Ensemble Approach of CMIP3 Climate Models. Advances in Meteorology.
Wood, E. F., Sivapalan, M., Beven, K., Band, L (1988) Effects of spatial variability and scale with implications to hydrologic modeling. Hydrology, 102: 29-47.
Jakeman, A. J., Hornberger, G. M (1993) How much complexity is warranted in a rainfall-runoff model,  journal Water Resources Research, 29(8): 2637-2649.
Littlewood, L. G., Clarke, R. T., Collischonn, W Croke, B. F. W (2007) Predicting daily Streamflow using rainfall forecasts, a simple loss module and unit hydrographs: Two Brazilian catchments. Environmental Modeling and Software, 22: 1229-1239.
Croke, B. F. W., Jakeman, A. J (2004) A catchment moisture deficit module for the IHACRES rainfall runoff model .Journal. of The Environment Modeling & Software, 19: 1-5.
Croke, B. F. W., Andrews, F., Spate, J., and Cuddy, S. M (2005) IHACRES user guide. Technical Report 2005/19. Second Edition. iCAM, School of Resources, Environment and Society, The Australian National University, Canberra.
Croke, B. F. W., and Jakeman, A. J (2008) Use of the IHACRES rainfall-runoff model in arid and semiarid regions, P 41-48, In: Wheatear, H. S. Sorooshian,S. Sharma, K. D. (Eds.): Hydrological Modeling in Arid and Semi-arid Areas. Cambridge University Press, Cambridge.
Motovilov, Y. G., Gottschalk, L., Engeland, K., Rohde, A (1999) Validation of a distributed hydrological model against spatial observations. Agriculture and Forest Meteorology, 98 (99): 257-277.