Study of mineral chemistry of biotite in Zargoli granitoid, Northwest of Zahedan

Document Type : Research Paper

Authors

Abstract

Zargoli granitoid is located in the northwest of Zahedan and south-east of Iran. This granitoid is composed mainly of granodiorite. Mineral chemistry of biotite was studied in granodioite rocks with the aid of EPMA and the results of this study were compared with the mineral chemistry data of biotite in Zahedan granitoids. Total amount of aluminum in comparison to Fe / (Fe + Mg) ratio in biotites of Zargoli granodiorite indicates the presence of aluminous upper crust materials (metamorphosed sediments) in magma by digestion process. Total Al amounts of biotites of Zahedan granodiorite were lower than those of Zargoli granodiorite and it is indicative that the magma of Zahedan granodiorite is less contaminated by crustal rocks. The study of mineral chemistry of biotite determines that the studied granodiorites were I-type and composed of a calc-alkaline granitic magma. This magma climbed in a subduction environment and contaminated with sedimentary rocks of the upper crust. The chemistry study of biotite determines a relatively high oxygen fugacity (10-12 to 10-13 bar) and an oxidant conditions for granodioritic magmas studied. The amount of oxygen fugacity in the Zahedan granite magma is obtained from 10-14 to 10-15 bar which in fact represents a weak oxidizing condition in the Zahedan granite magma.

Keywords


[1] صادقیان، م (1383) ماگماتیسم، متالوژنی و مکانیسم جایگزینی تودة گرانیتوئیدی زاهدان، رسالة دکتری، دانشگاه تهران، دانشکده علوم، 450 ص.
[2] قاسمی، ح. ا.، صادقیان، م.، کرد، م.، خانعلی­زاده، ع (1388) سازوکار شکل­گیری باتولیت گرانیتوئیدی زاهدان، جنوب­شرق ایران، مجله بلورشناسی و کانی­شناسی ایران، شماره 4 ،551-578.
[3] کشتگر، ش (1383) پترولوژی، ژئوشیمی و تحلیل ساخـتاری گرانیت‌های زرگلی (‌شمال­غرب زاهـدان‌)، پایان­نامه کارشناسی­ارشد، دانشگاه تهران، 161 ص.
[4]              Abdel-Rahman A. M (1994) Nature of biotites for alkaline, calk-alkaline and peraluminous magmas, Journal of Petrology 35, 525-541.
[5]              Anderson J. L., Smith D. R (1995) The effects of temperature and ƒO2 on the Al-in-hornblende barometer, American Mineralogist 80, 549-559.
[6]              Camp V. E., Griffis, R. J (1982) Character, genesis and tectonic setting of igneous rocks in the Sistan Suture Zone, eastern Iran, Lithos 15, 221-239.
[7]              De Pieri R., JobstraibizerPadova (1983) Crystal chemistry of biotites from dioritic to granodioritic rock-types of Adamello Massif (Northern Italy), NeuesJahrbuch Miner. Abh. 148, 58-82.
[8]              Esmaeily D., Maghdour-Mashhour R (2009) Geochemistry of biotites from Boroujerdgranitoid complex, SSZ, Iran: A crucial factor for illustration petrogenesis and tectonomagmatic environment of host rock?, Geophysical Research Abstracts, vol.11. EGU 7980.
[9]              Foster M.D (1960) Interpretation of the composition of trioctahedral micas, United states Geological Survey Professional Paper 354-B 11-46
[10]Huaimin X., Shuwen D., Ping J (2006) Mineral chemistry, geochemistry and U-Pb SHRIMP zircon data of the Yangxinmonzonitic intrusive in the foreland of the Dabieorogen”, Science in China: Series D Earth Sciences 49, 684-695.
[11]Middelaar, W. T., Keith, J. D (1990) Mica chemistry as an indicator of oxygen and halogen fugacities in the CanTung and other W-related granitoids in the North American Cordillera, Geological Society of America, Special Paper,246, 205-220.
[12]Monuz J.L (1984) F-OH and CI-OH exchange in mica with application to hydrothermal ore deposits, Reviews in Mineralogy13 469-493.
[13]Nachit H., Lbhi A., Abia E.H., Ohoud M.B (2005) Discrimination between primary magmatic biotites, reequilibratedbiotites and magmatic biotites and neoformedbiotites, Geomaterials (Mineralogy), Geoscience 337 1415-1420.
[14]Rezaei-Kahkhaei M., Kananian A., Esmaeily D., Asiabanha A (2010) Geochemistry of the Zargoli granite: Implications for development of the Sistan Suture Zone, southeastern Iran, Island Arc 19, 259-276.
[15]Shabani A.T., Lalonde A.E., Whalen J.B (2003) Composition of biotite from granitic rocks of the Canadian Appalachian orogen: A potential tectonomagmatic indicator? The Canadian Mineralogis 41, 1381-1396.
[16]Spear J.A (1984) Micas in igneous rocks, In: Micas, Bailey S.W., (ed); Mineralogical Society of America Review in Mineralogy, 13 299-356.
[17]Streckeisen A (1976) To each plutonic rock its proper name, Earth Sci. Rev. 12, 1-33.
[18][18] Wones D. R., Eugster H. P (1965) Stability of biotite: experiment, theory, and application, The American Mineralogist 50, 1228-1272.
[19]Xianwu B., Ruizhong H., Hanley J.J., Mungall J.E., Jiantang P., Linbo S., Kaixing W., Yan S., Hongli L., Xiaoyan H (2009)  Crystallisation condition (T, P, ƒO2) from mineral chemistry of Cu- and Au-mineralised alkaline intrusions in the Red River-Jinshajiang alkaline igneous belt, western Yunnan Province, china, Miner. Petrol., 96, 43-58.
[20]Yang W J., Wang L K., Zhang S L., et al (1986) Micas of the two series of granites in south China, Acta Mineral Sin (in Chinese), 6(4): 298-307.
[21]Yang X. M., Lentz D. R (2005) Chemical composition of rock-forming minerals in gold-related granitoid intrusions, southwestern New Brunswick, Canada: implications for crystallization conditions, volatile exsolution, and fluorine-chlorine activity, Contrib. Mineral. Petrol., 150, 287-305.