Laboratory Modeling of hydraulic fracturing

Document Type : Research Paper

Authors

Abstract

Hydraulic fracturing has two major applications: 1. determining the in-situ stress state of a site; 2. increasing the productivity of oil wells by propagating the existing fractures at the site. Hydraulic fracturing is used in the oil industry in order to increase the index of production and processing in wells whose efficiency has been dropped due to long-term harvest or the rocks around the well are low permeable.In this study, the Hoek triaxial cell was adapted for a laboratory modeling of hydraulic fracturing. The specimens under study are in the shape of thick-walled hollow cylinders with an external diameter of 54.7 mm, an internal diameter of 12 mm, and a height of 108 mm. These specimens were taken from the carbonate rocks of the Bangestan reservoir, located in the southwest of Iran. By using the cell, the hydraulic fracturing experiment can be modeled in the laboratory before being conducted at the site, so that a suitable pump can be selected. In all the experiments, the fractures are created with a vertical (along the sample axis) or near-vertical orientation. Borehole breakdown pressure increases with an increase in lateral stress but does not change much with a change in vertical stress.

Keywords


[1] زارع­زاده، م. شاکری، ه (1393) بررسی آزمایشگاهی تاثیر تتنش­های محوری و محصور کننده بر شکست هیدرولیکی، نشریه پژوهش نفت، شماره 81.
[2] کیوانی هزه بران، ه. همزبان قراملکی، م، ت. شاکری، ه (1393) مدل­سازی آزمایشگاهی جهت ترک­های ایجاد شده به روش شکست هیدرولیکی، پنجمین کنفرانس مکانیک سنگ ایران، تهران، انجمن مکانیک سنگ ایران، دانشگاه تربیت مدرس.
[3] Athavale A. S. and Miskimins (2008) Laboratory hydraulic fracturing tests on small homogeneous and laminated Blocks, ARMA-08-067.
[4] Bohloli B, De pater C. J (2006) Experimental study on hydraulic fracturing of soft rocks: influence of fluid rheology and confining stress, J.Petroleum Science and Engineering .USA. No. 53.
[5] Cheung, L.S (1990) Laboratory Simulated Hydraulic Fracturing Stress Measurements in Intact andPrefractured Rocks, Ph.D. dissertation, U. of Wisconsin, Madison, WI.
[6] Clarck, J.B (1949) A Hydraulic process for increasing the productivity of wells, Petroleum Division Fall Meeting, Dallas, Texas.
[7] Daneshy, A.A (1973) A Study of Inclined Hydraulic Fractures, Soc. Petroleum Engineers J. 13, No. 2, 61-68.
[8] De pater, C. J. and Beugelsdijk,  L. J. L (2005)  Experiments and numerical simulation of hydraulic fracturing in naturally fractured rock,  presented at Alaska Rocks, The 40th U.S. Symposium on Rock Mechanics.
[9] Elkadi, A. & Van Mier, J (2004) Scaled hollow-cylinder tests for studying size effect in fracture processes of concrete, . fracture mechanics of concrete structures, 1, 229-236.
[10] Guo, F., Morgenstem, N. R., and Scott, J. D (2005) An experimental investigation into hydraulic fracture propagation, Journal of Rock Mechanics & Mining Sciences. Abstr., Vol. 30, No.3, 177-188.
[11] Haimson, B. C. and Fairhurst, C (1967) Initiation and extension of hydraulic fracturing in rocks,  Soc. Petrol. Engrs. J. Sept.,  310- 318.
[12] Hoek, E. & Franklin, J. A (1967) A simple triaxial cell for field or laboratory testing of rock, Imperial College of Science and Technology, University of London.
[13] Hubbert, M. K. and Willis, D.G (1957)  Mechanics of hydraulic fracturing, Trans. AIME 210,  153- 166.
[14] Matsunaga,  I., Kobayashi,  H., Sasaki,  S. and Ishida T (2001)  Studying hydraulic fracturing mechanism by laboratory experiments with acoustic emission monitoring, Journal of Rock Mechanics & Mining Sciences, Abstr., Vol. 30,No.7,  909-912.
[15] Ribeiro, P,R. de Oliveira e Sousa, J, L, A. Fernandes, P,D. Caldas Leite,V,L (1999) Hydraulic fracturing physical simulation, 15th Brazilian congress of mechanical engineering, November 22-26, Sao Paulo.
[16] Satoh. H, S & Yamaguchi, Y (2009) Laboratory Hydraulic Fracturing Tests For Core Materials Using Large Size Hollow Sylinderical Specimens, The 1st International Symposium on Rockfill Dams.
[17] Shimizu, H., Murata, S., and Ishida, T (2011) The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution, J. Rock Mech. Min. Sci. No. 48.