Geochemistry, tectonic setting and petrogenesis of Sefidkuh granitoid rocks and comparison with Shahkuh granitoid, West of Nehbandan, East of Lout block

Document Type : Research Paper

Authors

Department of Geology, Faculty of Sciences, University of Lorestan

Abstract

The Sefidkuh granitoid and Shahkuh granitoid are located in southwest of Nehbandan city (South Khorasan province) and east of Lut Block. The Shahkuh granitoid rocks made of two main units by combining monzogranit-granodiorite and syenogranite and its major mineral are quartz, plagioclase, alkali-feldspar, biotite and amphibole. The Sefidkuh granitoid is contain composition range of granite (monzo and syenogranite), granodiorite and composed of the mineral quartz, plagioclase, microcline, orthose and biotite. The plagioclase composition of the Sefidkuh granitoid rocks is often andesine and sometime is albite, it is all andesine in the enclaves of Sefidkuh and Shahkuh and its granodiorite unit, and its oligoclase to andesine in Shahkuh granitoid unit. The biotite composition of Sefidkuh felsic and Shahkuh mafic enclaves is magnesium biotite type, Shahkuh granodiorite is ferrugineous biotite to magnesium and Sefidkuh granite massif and Shahkuh syenogranite unit are ferrugineous biotite and both massif are first magma types. The study of the mineral chemistry and geological masses suggest that these masses belong to calc-alkaline magma related to active continental margin. In the changes to the chondrite- normalized trace element diagrams, rock of this figures are enriched by LILE and LREE, depletion of HREE and HFSE and negative anomalies Sr, Ti, Nb, and Ba indicate that they are compatible with characteristic of the rocks depend on the active continental margin environment. The tectonic discrimination diagrams, show the dependency of shahkuh granitoid massif to the simultaneously dealing environment (syn- collision), and Shahkuh granodiorite massif with volcanic arc subduction (VAG). The petrogenetic diagrams indicated that Shahkuh granodiorite is from a source of amphibolite, Sefidkuh granitoidis from a source of metagreywackes and Shahkuh syenogranite have been achieved from a source of amphibolite to felsic pelite.

Keywords


[1] اسماعیلی، د.، ولی­زاده، م. و.، حسین‌زاده، ج.، بلون، ا (1380) تنوع سنگ‌شناسی ‌توده گرانیتوئیدی شاه‌کوه (جنوب بیرجند) و ‌تعیین ‌سن رادیومتری‌ آن به روش پتاسیم- آرگون،  فصلنامه علوم­زمین، شماره 41-42، 2-10.
[2] طولاب­­نژاد، ع.، بیابانگرد، ح.، احمدی­خلجی، ا (1393) سنگ‌شناسی، شیمی کانی‌ها و دماسنجی توده گرانیتی سفیدکوه و برونبوم‌های میکروگرانولار فلسیک آن، باختر نهبندان، خاور ایران، مجله بلور‌شناسی و کانی‌شناسی ایران، شماره 4، 585 - 598.
[3] Abdel-Rahman, A (1994) Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas, Journal of Petrology 35: 525-541.
[4] Almeida, M.E., Macambira, M.J.B., Oliveira, E.C (2007) Geochemistry and Zircon geochronology of the I-type high-K Calc-alkaline and S-type granitoid rocks from southeastern Roraima, Brazil: Orosirian collisional magmatism evidence (1.97–1.96 Ga) in central portion of Guyana Shield, Precambrian Research, 155: 69-97.
[5] Boynton, W.V (1984) Geochemistry of the rare earth elements: meteorite studies. In: Henderson, P. (Ed.), Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63–114.
[6] Chappell, B. W., White, A, J. R (1992) I and S – type granites in the Lachlan Fold Belt, Transactions of the Royal Society of Edinburgh Earth Sciences 83 : 1-26.
[7] Chappell, B W., White, A J, R (1974) Two contrasting granite types, Pacific Geology 8: 173-174.
[8] Deer, W.A., Howie, R.A., Zussman, J (1991) An introduction to the Rock – forming minerals, Longman, London, 528 p.
[9] Esmaeily, D., Ne´de´lec, A., Valizadeh, M.V., Moore, F., Cotton, J (2005) Petrology of the Jurassic Shah-Kuh granite (eastern Iran), with reference to tin mineralization, Journal of Asian Earth Sciences 25: 961–980.
[10] Guo, J., Green, T.H (1990) Experimental study of barium partitioning between phlogopite and silicate liquid at upper-mantle pressure and temperature, Lithos 24 : 83-95.
[11] Harker, A (1909) The  natural history of igneous rocks, Methuen, London.
[12] Irvine, T.N., Baragar, W.R.A (1971) A guide to chemical classification of the common volcanic rocks, Canadian Canadian Sciences 8: 523-548.
[13] Maniar, P.D., Picooli, P.M (1989) Tectonic discrimination of granitoids, Geological Society. ofAmerican Bulletin 101: 635 – 643.
[14] Martin, H (1993) The Archaean grey gneisses and the genesis of the continental crust, In: Condie, K. C. (Ed.): The Achaean Crustal Evolution. Elsevier, Amsterdam 205-259.
[15] Nachit, H., Ibhi, A., Abia, E.H., Ohoud, M.B (2005) discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites, Geomateriala (Mineralogy), Comptes Rendus,Geosciences 337: 1415-1420.
[16] Nachit, H (1986) Contribution a Iétude analytique et experimental des biotite des granitoids Applications typologiques, These de Doctorat DeĽ université de Bretagne accidental, 236p.
[17] Nakamura, N (1974) Determination of  REE, Ba, Fe, Mg, Na and k in carbonaceous and ordinary Chonrdrites, Geochimica et Cosmochimica Acta 38 : 757-77.
[18] Nicholson, K. N., Black, P. M., Hoskin, P. W. O., Smith, I. E. M (2004) Silicic volcanism and back – arc extension related to migration of the late Cenozoic Australian – Pacific plate boundrary, Journal of volcanic and geothermal research 131: 295 – 306.
[19] Patino Douce, A. E (1999) What do experiments tell us about the relative contribution of crust and mantle to the origin of granitic magmas? In: Castro A, Fernandez C, Vigneresse J L (eds) Understanding Granites: Integrating New and Classical Techniques 50. Geological Society, London, Special Publications 168 : 55-75.
[20] Pearce, J.A., Harris, B.W., Ttindle, A. G (1984) Trace element of iseriminant diagrams for the tectonic interpretation of granitic rocks, Journal of petrology 25 : 956-983.
[21] Rogers, J.J.W., Rayland, P.C (1980) Trace elements in continental margin magmatism, Part I, Geological Society. ofAmerican Bulletin 91: 196-198.
[22] Speer, J. A (1984) Mica in igneous rocks, In: Micas, Bailey S. W. (ed); Mineralogical Socity of America, Reviews in Mineralogy and Geochemistry 13 : 299-356.
[23] TabakhShabani, A.A.; Masoudi, F., Tecce, F (2010) An Investigation on the Composition of Biotite from Mashhad Granitoids, NE Iran, Journal of Sciences, Islamic Republic of Iran 21: 321-331.
[24] Tepper, J.H., Nelson, B.K., Bergantz, G.W., Irving, A.J (1993) Petrology of the Chilliwack batholith, North Cascades, Washington: generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity, Contributions to Mineralogy and Petrology 113 : 333–351.