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Fig. 1. Microstructural features of a crystal and some analytical techniques used to analyze them (after Gault et al., 2021). A:
Typical microstructural features of a mineral, from the atomic arrangement of a crystal lattice, through a range of crystalline
defects, phases and grains, to imperfections at the surface. B: Detection range and crystal dimensions detectable by different
analytical techniques. Abbreviations: APT, atom probe tomography; EBSD, electron backscattered diffraction; ECCI,
electron- channeling contrast imaging; EDS, energy- dispersive X- ray spectroscopy; EELS, electron energy loss spectroscopy;

SEM, scanning electron microscopy; SIMS, secondary ion mass spectrometry; (S)TEM, (scanning) transmission electron
microscopy; TKD, transmission Kikuchi diffraction.
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Fig. 2. Google earth aerial image of the various gold anomalies in the Iman Khan anticline and the location of the

Yeganli-2 gold deposit in its southern part.
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Fig. 3. Field images and hand samples of the mineralization features in the Yeganli-2 gold deposit. A: View of the travertine-
forming spring in the Takab-Anguran district (view to the north), B: Boundary of the Zarshuran black shale and Chaldagh
limestone rock units (view to the north), C: Close-up view of the Chaldagh thin-layer unit (view to the east), D: Black organic
matter in the Zarshuran black shale unit, E: As-sulfide vein-veinlet in the Chaldagh limestone host, F: Purple fluorite gangue.
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Fig. 4. Simplified geological map from the Yeganli-2 deposit and location of four major orebody (I, I, ITL, IV).

S 5 Ay gbows jelaiedy.aud F 13 lulis o 90 EDS
Gt by Cupmimi] Glajsl bt
;> JEOL JXA-8230 Jaw (EPMA) _ssSlsss,
IR en Sppe () Sl (ouliliine) dunsge
S ooz S Te b el s a5
O 0o 5 09,8 ¥ oSl 53 8 palsili V- (39,5
CAMECA olSius 5l oslitul b (APT) _ail Sitgls
(562) 2 SHRIMP _sliis 35 0 0 LEAP 5000 XR
AL As o dihie gyl APT (j5am ol ploxl
ob slysbe )t bepdl yo 0 g 0P s
PO ol g5 5 ol 2 o T AY (65 (egili A =355)
Job ) eaiges (28,5 )15 Juloxi g 4525 9,50 35,09LS
b o wad )l pelS B0 les yo eesls u8 F
wejom ghaw Alr o9 5l Gl S b @ e
CAMECA Jlj3ls 5 5l oslizl b colgs o 5 w3 Lol
ol 5 iy S 5 Uil o)9e AP Suite 6.3

LS ol 5l Jisd g0 slaws lollls glacy yu yuins |

axfllo g, -Y
b LS Sl oads (s pslaer sladiged (g9, 5 anlllas
oot b (JBlassT aleS g0 5l jasein jsbay V- LIS
YG-BH34 5 ( 545 5 je YO (3e) YG-BH-19
435 O jg0 (Il pals 5l 5 VPO g V) AN sl os)
a5 (Sl B pre sladiges (F Ko 4 dxxl o) o

[y Oy 9 (o gmndins o555 gl Sy (|
Ve el 4y o 536 abolie Ly cisls s i
@or ) om e el Jie g oy 095
iaind JK& 5 S8l ull o gy Elgil (959 Sene
Slallbe (gl ganailaie Glls Glacem uil 5 00l
b gblio ad QLT olesd oS 5 et 9 Bl 95%
0l 39l (pg ST Y o 0 oy Calbes) (oS Sibal
e SEM) (sivg) (G980 0 gSmg Sin 5l oalial b
O oilem oRiils W EDS ol ol oa EVO MA1S
Ot ST (sl b Sy (glo ol i (610 2 g
A S el Ol & VL% G55 20y ) ]
Gk Lasgs a5 (VoY) o Sa g siliil) 59 o 4285



YaA VFof i g 3l FA o ko 19 0590 (60 30,5 (bl cymny (.95 (SLoAISL

oS Slasfs bass I PY2 5Py s S
O ) wlbads ahad gam Cosm -3l (gleds,
135S~ S, Sjgen Ll Py3 gla sl
ObeySe Gl Bl S o oladl 5 Jogal Cuaglys
Foe bV er obol b PY3 s i ond LS5 onh
@ (4 —ae —ates cdl) ABar oy, 5 9SS
oaies wile caSe 5 gydegt ook eSS
S5l 5 (oSl LIS PY-3 sl ol (0 JS2) 95 oo
ol ol ks Calge 5 casll (sla Lol
s olae | PY3 sl g S S S
Se (V) Py-32) 05 9 b s (V) (Jolds (A 5
ad (1) 5 By-3b) 9,800 AT s @ (o, 4
6l 00,5 S8 (Py-30) (gaisaigy s Kb gy
a5 o3y s 5 asuie LS Py3 isup; aw oo
asien LalS g ploie gloolig, b o, Jol e oaumo i
— Bl DS wyn pslie @ el el wnlp b
oy Cinn )| (618 0l ) St 0 oliiss 5 (oliond
Sl 15 2 &Py 3 i (53, 5t ooty loln

ol 00 4.)|)| \ Jﬁ‘» 5 UT E)Lu 9 W

.—"' +

ol S b Jino glao 39§ e 11+ sl
© g dawgi (hg) al Sy oS abesls (1 Gat )5
Ot bdiged (gilwoslel 5l s il oo Lo (Y4 - 9)
e 3, KT 51 eolizl b o] oliogll looguas
sy San 5 (HAADE) Ul agly b sl S

gghS Voo 5ty 0 STEM) (ag) (5500 (5955
Sliss 33,6 0 JEOL ARM200F oo lawg

b el (e2) oSo SHRIMP

Ca g o095 9 (B S 90 -F
Y By Lt 5o ey o 1,555 a3
itsel b by Stiad Sy (1) ol a5 0 ololis
Gl Coym () 5 BY-2) oz oy (V) Py-D)
Py-1 (oldlas 3l (0 JSK0) s (Py-3) (gossaiy
S5 (pSan Ar 51+ ) (gysh Shaas 5y
Sol (liae i 50 (059,500 0 51 oS 5ka8) 5 (sl yols
Sl U PY2 s o 2§ S5 (PEL, wly) ooy S
Olsee > SSiny 5 JBl gy 009,500 Yoo BV
oK ol ons LS5 (PEL, wolg) all S5 Sal

oy B PY-1) Sl o Jhdgnolyd o g A V- L g Sl 50 g gy it (gl funs S BSE g il g8y ;a0 yrgliai .0 JSb

Py-3 il ) ad - - ailfniz (oo 9) D (PY-3) pos Jousi g (53> S gy — 515 455 10 PY-2) pgo Joui (sl
Fig. 5. BSE electron microscope images of different pyrite generations in the Yeganli-2 gold deposit. A: First-generation
framboidal pyrite (Py-1), B: Second-generation box pyrite (Py-2), C: Quartz-pyrite vein containing third-generation pyrite

(Py-3), D: Multiple core-mantle-rim overgrowth in the Py-3 texture.
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Table 1. Minimum, maximum and mean values of various major and trace elements in Py-3 of the Yeganli-2 gold deposit
by EPMA. Major elements iron and sulfur based on wt.% and other trace elements in ppm.

Value S Fe Ag As Au Co Ni Cu Pb Sb Tl Sn Bi Zn Total
Mean | 52.23 | 50.18 | bdl | 2.34 [ 0.02 | 0.26 | 0.22 | 0.08 | 0.04 | 0.04 | 0.11 | 0.01 | 0.07 | 0.01 | 100.02
(ll?:;;) Max 53.81 | 51.17 | 0.02 | 3.82 | 0.04 | 0.81 | 0.88 | 0.12 | 0.13 | 0.13 | 0.18 | 0.06 | 0.12 | 0.04 | 100.07
Min 50.61 | 48.21 | bdl 1.91 | bdl 0.12 | bdl | 0.02 | 0.02 | 0.02 | bdl 0.02 | 0.02 | 0.02 | 99.32
Mean | 51.11 | 50.12 | bdl | 3.67 | 0.03 | 0.08 | 0.04 | 0.12 | 0.11 | 0.31 | 0.21 | 0.01 | 0.06 | 0.06 | 98.97
(11)1):;’4:)) Max 52.03 | 51.05 | 0.01 | 4.52 | 0.07 | 0.23 | 0.13 | 0.31 | 0.33 | 0.77 | 0.45 | 0.04 | 0.24 | 0.13 | 100.23
Min 5041 | 49.07 | bdl | 3.41 | bdl | bdl | 0.02 | 0.03 | 0.03 | 0.08 | 0.06 | bdl | 0.09 | 0.03 | 98.54
Mean | 52.08 | 50.08 | bdl | 3.55 | 0.01 | 0.02 | 0.03 | 0.03 | 0.04 | 0.06 | 0.14 | 0.01 | 0.06 | 0.02 | 99.33
(I;;;—fsc) Max 53.06 | 51.06 | 0.02 | 4.33 | 0.03 | 0.06 | 0.10 | 0.06 | 0.22 | 0.23 | 0.21 | 0.03 | 0.11 | 0.08 | 100.32
Min 50.87 | 48.53 | bdl | 2.53 | bdl 0.01 ] 0.02 | bdl | bdl | 0.08 | bdl | bdl | 0.03 | 0.02 | 99.78

bdl= below detection limit, n= point of analysis.
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Fig. 6. Images of EPMA elemental maps from the Py-3 in the Yeganli-2 deposit. A: Arsenic elemental map, B: Iron elemental
map, C: Sulfur elemental map, D: Silver elemental map, E: Gold elemental map, and F: Cobalt elemental map.
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Fig. 7. Electron microscope and APT images of third generation pyrite (Py-3). A: BSE image of different part of Py-3, B:
STEM image of section Py-3b, C: APT image of arsenic epitaxial growth, D: APT image of gold epitaxial growth, E: APT
image of copper epitaxial growth, F: APT image of antimony cluster growth, G: APT image of thallium cluster growth.
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Fig. 9. Types of epitaxial growth modes in materials (Levi and Kotrla, 1997). A: Frank-van der Merwe growth mode, B:
Stranski—Krastanov growth mode, C: Volmer—Weber growth mode.
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Abstract

Understanding the complex interplay between the crystallization processes and distribution of precious trace
elements (e.g., gold) is of great importance in economic geology. In this contribution, the effective factors on the
incorporation of trace elements, especially gold, during the epitaxial growth of Au-bearing arsenian pyrite crystal
in the Yeganli gold deposit (north of Takab) have been interpreted by advanced electron-atomic techniques.
According to SEM evidence, As-rich (>3 ppm) bright bands with a thickness of 10 nm have other trace elements
(e.g., Cu, Sb, Pb, and T1). According to the evidence of APT, the heterogeneous distribution of trace elements with
the appearance of islands along the discontinuous planar features from the outer edge of the As-rich bright bands
is known as Stranski-Krastanov growth mode, and with the distance from these bands, epitaxial growth occurs as
a result of periodic fluid fluctuations. Also, As-induced lattice distortion facilitates surface adsorption of dopant
trace metals, which leads to “unstructured” impurities clustering locally in crystal defects. In summary, based on
nano-scale textural-chemical evidence from arsenitepyrite crystals, it can be said that the kinetics of crystal growth
and its complex interaction with the equilibrating hydrothermal fluid play an important role in the distribution and
concentration of gold, which can be considered as a prospecting implication at the mineralogical scale.

Keywords: Arsenian pyrite, Precious elements, Atom probe tomography, Epitaxial growth, Yeganli-2 deposit

Introduction

The mineral zoning is a time-recorded effect of
crystal growth kinetics that occur at the mineral-
fluid interface in equilibrium. Meanwhile, pyrite, as
the most abundant sulfide mineral in hydrothermal
systems, is the most suitable mineral for evaluation
of hydrothermal fluid through textural-chemical
properties. However, the relationship between
pyrite crystallization kinetics and elemental
enrichment (e.g., gold), by multiple hydrothermal
fluid remains unclear. Arsenian pyrite is the most
important gold bearing mineral in sedimentary-
hosted deposits (e.g., Carlin-type) and orogenic Au
deposits, which identified by multiple overgrowths
and compositional zoning pattern. The growth and
formation of pyrite crystals is effective on the
enrichment processes and increase in the grade of
trace elements (e.g., gold). The Yeganli-2 gold
deposit is located at north of Takab city and belong
to the Takab-Angouran metallogenic belt. A total of
more than 6,000 meters of core drilling has been
carried out in the Zarshuran exploration area, of
which about 2,000 meters belong to the Yeganli
gold deposit. In this study, a comprehensive
textural-chemical approach was used to investigate
crystal chemistry and its relationship to complex
nano-scale processes through the epitaxial growth

mechanism in gold-bearing arsenian pyrites from
the Yeganli-2 deposit.

Material and methods

The study was conducted on collected samples from
the Yeganli-2 gold deposit, specifically from two
exploration boreholes: YG-BH-19 (75 m depth from
orebody I) and YG-BH-34 (88 m, 110 m, and 165 m
depths from orebody II). The representative ore
samples, showed arsenian pyrite stockwork,
silicification and pyritization, were cut into 100-
micron-thick thin-polished sections. The polished
sections were coated with a thin carbon layer (about
200 A° thick) and imaged using an EVO MAL1S
scanning electron microscope (SEM) with EDS
spectrum at Kharazmi University, Tehran. Pyrite
crystals with an arsenic content of more than 1 wt.%
are considered as arsenian pyrite. The elemental
concentrations in arsenian pyrite were measured
using a JEOL JXA-8230 electron probe
microanalyzer (EPMA) at the Shandong Institute of
Geological Science, Jinan, China. The atom probe
tomography (APT) sample was prepared at the
Beijing SHRIMP Center using a Thermo Fisher
Scientific Scios 2 Ga* FIB coupled with an SEM.
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Results and discussion

Mineralization in the Yeganli-2 gold deposit is
mainly occurring in four ore bodies (I, II, III, IV)
formed mainly in porous carbonate host rock of the
Chaldagh Limestone unit with an NNE-trend.
Mineralization with a disseminated, vein-veinlets,
space-filling and breccia geometry is known with
pyrite, As-sulfide minerals (orpiment and realgar),
sphalerite and galena. Gangue minerals include
quartz, fluorite, barite, calcite, dolomite, mica,
chlorite and minor minerals apatite, zircon and illite.
Mineralization in the Yeganli-2 gold deposit is
similar in many respects to disseminated gold
deposits far from the source with sedimentary host
rocks, the characteristics of which were first studied
by Johnston and Ressel (2004). Arsenian pyrite
mineralization is often disseminated and less often
vein-veinlets in the carbonate host rock of the
Chaldagh Limestone unit, which has a significant
concentration of gold. Based on petrographic
evidence, three pyrite generations were identified in
the Yeganli-2 deposit, including (1) raspberry-shape
or framboidal pyrite (Py-1), (2) box-shaped pyrite
(Py-2), and (3) zoned pyrite (Py-3). Py-1 is formed as
crystal aggregates (10 to 80 microns in diameter) of
small single crystals (less than 5 microns in diameter)
in a carbonaceous limestone host rock (P€yy unit).
Py-2 generation with dimensions of 20 to 300
microns, without inclusions and microfractures, is
formed in a thin-layered limestone host rock (P€L,
unit). The limestones hosting Py-1 and Py-2 are often
cut by hydrothermal alteration and subsequent
quartz-pyrite veins. Py-3 crystals are often formed as
pyrite-quartztiron-bearing  dolomite veins and
disseminated in altered carbonate host rocks. Py-3
generation is characterized by dimensions of 100 to
600 microns and multiple growth (core-mantle-rim
texture) in pyritohedron and cubic crystal shapes.
Based on EPMA elemental maps, Py3 crystals have
three distinct domains, each with a different chemical
composition. The Py-3a part in the core is rich in Co-
Ni elements with variable arsenic concentrations.
The Py-3b part is narrow in the mantle and has a high
content of As, Au, Cu, Pb, and TI elements. The Py-
3c part at the rim is strongly influenced by a bright
BSE band (about 50 nm) which is rich in As, Au, Cu,
Bi, Sn, and Zn elements. Compared to the Py-3c part,
the Py-3b part has higher levels of Cu, As, Sb, T1, and
Pb elements, but lower levels of gold.

An As-rich band with a resolution of about 5 microns
was identified in the Py-3b part by SEM images,
which was also confirmed by STEM observations.
Apart from pyrite, no other nanoparticles or mineral
phases were found in the STEM images. STEM
analyses showed that arsenic was the only trace
element detected in the Py-3b band with
heterogeneous composition. In order to obtain the
geometry of the trace element distribution in the Py-

3b part, the nanometer-scale APT method was used.
According to the studies, the APT analysis revealed
a heterogeneous distribution of trace elements in the
As-rich region of the bright Py-3b band. In particular,
the As, Sb, Cu and Au-rich band at the base of the
sample is notable, which is about 10 nm thick in the
APT reconstruction. The top of the APT sample is
characterized by thinner As-Cu bands parallel to the
10 nm band, but with lower trace element content.
EPMA analyses indicate a negative correlation
between As and S, and accordingly, in the As-Fe-S
ternary diagram (Romadn et al., 2019), arsenic follows
the As™ trend. These observations indicate that As™ is
identically substituted for S™ in the pyrite lattice.
Furthermore, the homogeneous distribution of gold
without the formation of nanoparticles in the growth
bands indicates that gold is substituted by identical
substitution in the arsenic-pyrite lattice. The molar
solubility diagram of arsenic versus gold with the
relationship Cay = 0.02 X Cas + 4 x 107 (Rich et al.,
2005) was used to predict the occurrence of gold in
arsenian pyrite. The kinetics of arsenian pyrite
crystallization can be considered as intergrowth due
to the impurity-defect coupled effect, which is
consistent with the process of crystal self-
organization.

Conclusion

Nanoscale textural-chemical analyses of arsenian
pyrite crystals from the Yeganli-2 gold deposit
reveal the heterogeneous contribution of trace
elements, especially gold, during the history of the
epitaxial growth of this crystal. Trace elements
(such as As, Au, Cu, Sb, Pb, and TI) are
concentrated in the As-rich bands of the arsenian
pyrite crystal and show complex geochemical
behavior. Among them, arsenic, gold, and copper
are incorporated as homogeneous and
heterogeneous solid solutions in the nano-scale
bands of arsenian pyrite, while other trace elements
such as lead, antimony, mercury, and thallium are
present as structure-less impurities in crystal
defects in the form of clusters. The distribution and
dispersion of trace elements is controlled by
"chain reactions" between lattice defects and
impurities during intergrowth. The accumulation
of impurity-induced lattice defects leads to a
transition from layer-by-layer growth to island
growth mode or the Stranski-Krastanov growth
mode, which is consistent with homogeneous
(oscillatory zoning) and heterogeneous (cluster)
distribution of trace elements. In summary,
according to nanotextural-chemical and kinetic
evidence of arsenian pyrite crystal, gold
enrichment in the Yeganli-2 gold deposit has
formed during periodic events and multi-element
hydrothermal pulses in a short time period.



