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Fig. 1. Location of the oil fields in the southwest of Iran and Marun oil field which is shown by a red polygon
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Table 1. Biozonation of the well A (Goodarzi et al. 2019).

cerroazulesis - Hantkenina
Assemblage Zone

Biozone Thickness Age Depth formations
(m)
Globigerina spp - Turborotalia 93 L. Eocene | (3688 —3595) Pabdeh

Lepidocyclina — Operculina - 153
Ditrupa Assemblage Zone

Rupelian- | (3595 - 3442) Asmari
Chattian

Archaias asmaricus - Archaias 29.5
hensoni— Miogypsinoides

compalanatus Assemblage Zone

Chattian (3442-3412.5) Asmari
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Table 2. Biozonation of the well B (Goodarzi et al. 2019).

Biozone Thickness Age Depth formations
(m)
Globigerina spp - Turborotalia 59 L. Eocene | (3267.5-3208.5) Pabdeh
cerroazulesis - Hantkenina
Assemblage Zone
Lepidocyclina — Operculina - 165.5 Rupelian - (3208.5 —3043) Asmari
Ditrupa Assemblage Zone Chattian
Archaias asmaricus -Archaias 48 Chattian (3043 —2995) Asmari
hensoni— Miogypsinoides
compalanatus Assemblage Zone
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Plate 1

A; Globigerina sp (Transverse section; Mn A, Depth, 3638). B; Catapsydrax dissimilis (Transverse section; Mn A, Depth
3638). C; Hantkenina sp. (Oblique section; Mn, A, Depth, 3597). D; Globigerina mexicana (Oblique section; Mn A,
Depth 3636). E; Striate uvigerinid (Genus spl) (Oblique section; Mn A, Depth 3626, 3636 ). F; Dentoglobigerina
yeguaensis (Axial section; Mn A, Depth 3636). G; Miogypsinoides complanatus (Transverse section; Mn A, Depth 3414.
H; Heterostegina sp (Transverse section; Mn A, Depth, 3499). I; Lenticulina sp. (Axial section; Mn A, Depth, 3438). J;
Heterolepa sp. (Axial setione, Mn B, Depth 3264). K; Amphistegina cf lessoni (Axial section; Mn A, Depth, 3505). L;
Operculina complanata (Axial section; Mn B, Depth, 3043). M; Eulepidina elephantina., (Mn A, Depth 3525). N;
Lepidocyclina sp. (Axial section; Mn A, Depth 3488). O; Nephrolepidina marginata (Axial section; Mn A, Depth, 3412).
P; Nephrolipidina tournoueri (Axial section; Mn A, Depth 3412). Q; Archaias sp. (Axial section; Mn A, Depth 3416.50).
R; Spiroclypeous blankenhorni (Axial section; Mn B, Depth, 3043). S; Eouvigerina iranica (Axial section; Mn B, Depth
3193.6).
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Fig. 2. Mf A: planktonic foraminifera mudstone, Mf B: bioclast wackestone bearing planktonic foraminifera, Mf C:
wackestone/packstone (floatstone) contain elongate hyaline foraminifera (nummulitidae and lepidocyclinidae), Mf D:
bioclast packstone contain lenticular hyaline foraminifera and red algae, Mf E: grainstone with hyaline foraminifera,
MTf F: algal boundstone, Mf G: coral boundstone, Mf H: hyaline and porcelaneous foraminifera packstone/grainstone.
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Fig. 3. Salinity, light and nutrient variations according to vertical changes in microfacies of well A.
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Fig. 5. The sedimentary model of the studied well along with salinity, light and nutrient changes based on the identified microfacies
and sedimentary environments of well A. Mf A: planktonic foraminifera mudstone, Mf B: bioclast wackestone bearing planktonic
foraminifera, Mf C: wackestone/packstone (floatstone) contain elongate hyaline foraminifera (nummulitidae and lepidocyclinidae),
Mf D: bioclast packstone contain lenticular hyaline foraminifera and red algae, Mf E: grainstone with hyaline foraminifera, Mf F:
algal boundstone, Mf G: coral boundstone, Mf H: hyaline and porcelaneous foraminifera packstone/grainstone.
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Fig. 6. The sedimentary model of the studied well along with salinity, light and nutrient changes based on the identified
microfacies and sedimentary environments of well B. MF A: planktonic foraminifera mudstone, MF B: Bioclast wackestone
contain planktonic foraminifera, MF C: wackestone-Packstone (floatstone) with larger hyaline foraminifera (nummulitidae

and lepidocyclinidae), MF D: bioclast packstone with lenticular hyaline foraminifera and red algae, MF E: Coral boundstone,
MF F: packstone/grainstone with hyaline and porcelaneous foraminifera
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Fig. 7. Displaying paleoecological and sedimentary environment variations along with change in size and test of
foraminifera. A; Catapsydrax sp., B; Globigerina sp., C; Globonomalina sp., D; Hantkenina sp., E; Striate uvigerinid
(Genus spl), F; Globigerina mexicana, G; subbotina sp., H; Heterolepra sp., 1; Lenticulina sp., J; Operculina complanata,
K; Heterostegina sp., L; Spiroclypeous blankenhorni M; Eulepidina dilitata,N; Eulepidina elephantina,Q; Nephrolepidina
marginata ,P; Nephrolipidina tournoueri, Q; Lepidocyclina sp.. R; Heterostegina sp., S; Miogypsinoides complanatus, T
Heterostegina precursor, U. Red algal. V; Coral, W; Austrotrillina howchini, X; Pyrgo sp., Y; Dendritina rangiandZ:

Archaias sp.
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Fig. 8. Displaying substrate and hydrodynamic energy, A: soft and stable substrate, B: hard and unstable substrate.
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Fig. 9. The effect of the water depth on Amphistegina, left side picture: represents lamellar test in higher water depth
with lower energy regime, right side one shows lower water depth with higher energy and thicker test.
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Fig. 10. The effect of the water depth on Heferostegina, A: represents lower depth, higher energy and thicker test, B:

shows higher depth, lower energy and thin and elongate test.
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Fig. 11. The relationship between thickness, size and test variations in foraminifera with respect to changes in water
depth. A; Catapsydrax dissimilis. B; Globigerina sp. C; Hantkenina sp. D; Globigerina mexicana. E; Subbotina sp. .F;
Heterolepa sp. G; Lenticulina sp. H; Operculina complanata. 1; Spiroclypeous blankenhorni. J; Heterostegina sp. K;
Eulepidina dilitata. L; Amphistegina sp. M; Nephrolepidina marginata. N; Rotalia veeinoti. O; Nephrolepidina marginata.
P; Lepidocyclina sp. Q; Heterostegina sp. R; Amphistegina sp. S1; Heterostegina precursor. S2, 3; Heterostegina sp. T}
Miogypsinoides complanatus. U; Austrotrillina howchini. V; Dendritina rangi. W; Pyrgo sp. X; Quinqueloculina sp . Y;

Archaias sp.
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! Foraminifera reproduction
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Fig. 12. The relationship between thickness and size variations in nummulitidae with respect to changes in water depth.
Aj; Operculina complanata. B; Heterostegina sp. C; Spiroclypeous blankenhorni. D; Amphistegina sp. E; Heterostegina
sp. F; Amphistegina sp. G; Heterostegina sp. H; Heterostegina precursor.
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Fig. 13. The relationship between thickness and size variations in lepidocyclinidae with respect to changes in water
depth. A; Eulepidina elephantina. B; Eulepidina dilitata. C, E; Nephrolepidina marginata. D; Lepidocyclina sp.
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Fig. 15. Different kinds of foraminiferal reproduction in studied wells, A-B: sexual reproduction, microspheric form
(A: Heterostegina) and (B: Operculina), C-D: Asexual reproduction (C: Nephrolepidina marginata) and (D:

Heterostegina).
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Abstract

In the Current research paleoecology of the Upper Eocene (Pabdeh Formation) and Chattian (Asmari
Formation) has been studied by analyzing 250 thin sections in the Marun oil field (A and B). in the
studied wells the light conditions vary from the dark to maximum (aphotic to euphotic), salinity from
the normal to slightly higher than normal (34- 40 Psu), and the nutrients fluctuate from oligotrophic to
eutrophic. In the Upper Eocene interval (Pabdeh Formation) the abundance of Planktonic foraminifera
indicate a quiet, low energy and deep marine setting and in the Oligocene the occurrence of larger
benthic foraminifera in the basal parts of the Asmari Formation (distal part of the middle ramp) point to
low hydrodynamic energy conditions and a stable substrate. The presences of hyaline foraminifera with
lenticular, thicker tests and smaller in size in the proximal parts of the middle ramp suggest higher
energy and light levels and a higher energy shallow marine environment with unstable and firmground

substrate.

Keywords: Pabdeh Formation, Asmari Formation, Marun oil fields, Palaeoecology

Introduction

The Type Section of Pabdeh Formation is Gurpi
Anticline which located in the Pabdeh county.
Pabdeh Formation in this section is about 800
meters thick that consist of mainly purple shale
and marl in the lower part in addition gray shale,
Argillaceous limestone and cherty limestone in
the middle and upper parts. Gurpi Formation
located in lower boundary and Asmari Formation
is upper boundry. The age of the Pabdeh
Formation varies in different parts of the Zagros
sedimentary basin, such as in Fars and Khuzestan
the age of this formation is Paleocene to
Oligocene while in Lorestan it reaches the
beginning of the Miocene. This formation has
both source rock and reservoir rock
characteristics. Based on the studies conducted, it
has been determined that the thickness, age,
lithology, and fossil contents of this formation
vary in different parts of the Zagros sedimentary
basin. The Asmari Formation is the youngest
reservoir rock of the Zagros sedimentary basin,
and due to its economic importance (hydrocarbon
production), extensive and comprehensive
studies have been conducted on it. This formation
has two members, Ahvaz sandstone (south of the
Dezful embayment) and Kalhor evaporite

(northwest of the Dezful embayment and
southwest of Lorestan zone). In terms of
biostratigraphy, it is divided into three units:
Lower Asmari of Oligocene age, Middle Asmari
of Early Miocene age (Aquitanian) and Upper
Asmari of Early Miocene age (Burdigalian).The
lower and upper boundaries of the Asmari
Formation are affected by different sedimentary
and tectonic basin changes, so that in most places,
the Pabdeh Formation is located at the lower
boundary of the Asmari Formation, but in the
central Lorestan zone, the Shahbazan formation
and in the inner Fars zone, the Jahrom Formation
are deposited at the lower boundary of the Asmari
Formation. The upper boundary of this formation
is mainly the Gachsaran Formation, but in some
areas the Razak Formation has been deposited
instead of the Gachsaran Formation Aghanabati
(2011). Marun oilfield is located 40 km northeast
of Ahvaz city, south of the northern Dezful
embayment and along the Aghajari and Ramin
anticlines. This oilfield is 67.5 km long and 5.5
km wide on the Asmari horizon. This oilfield is
bounded by Ramin oilfield to the north, Ramshir
oilfield to the south, Kopal oilfield to the east, and
Ahvaz and Shadegan oilfields to the west and
northwest.



1874 VPeF linco) g jualy (FA o 5loud 19 0590 (60 39315 (ol fpny (9 93 (gloASL

Material and methods

In this study, 100 thin sections from 275.5 meters
of Well A and 150 thin sections from 272.5
meters of Well B were studied to understand the
paleoecological conditions prevailing at the time
of sedimentation of the sequence. In this study,
Microfossils identification was based on Adams
and Bourgeois (1967), Premoli Silva et al (2003),
Boudagher and Fadel (2015) and Hedavandkhani
et al (2017-2018). Biozonation and biozone
recognition were used from Laursen (2009) and
van Buchem (2010). Naming and classification
of carbonate rocks is based on Dunham (1962),
Embry A and Klovan (1971). identification of
microfacies and their interpretation based on
Wilson (1975), Buxton and Pedley(2000), Geel
(2000), Pomar (2007) and Flugel (2010).

Results and discussions

Benthic foraminifers are considered important
tools in paleontology, genera-species evolution,
relative depth determination, and reconstruction
of paleo environments due to their rapid
evolution, high abundance, wide distribution, and
sudden extinction of species or species
communities. Foraminifera, especially Larg
Benthic forms, are highly sensitive to
environmental changes, due to their short life
(often only a few months) are well able to record
the environmental conditions of their habitat. For
this reason, foraminifera are considered powerful
tools for interpreting of paleoconditions. In this
study, nine (9) paleoecological parameters such
as light, nutrients, salinity, hydrodynamic energy,
the nature of the substrate, depth, Symbiotic,
reproduction, and nutritional strategy were
investigated in the studied wells.

Light: based on the presence or absence of light-
dependent organisms and these light conditions
Pomar (2001) divided oceanic environments into
4 light zones: euphotic, Mesophotic, Oligophotic
and Aphotic.

Aphetic zone: In both wells studied, Mf A and
Mf B belong to this aphotic zone and its extension
is limited to the basin and outer ramp. These
microfacies belong to the upper part of the
Pabdeh Formation and were deposited in the Late
Eocene time range.

Oligophotic zone: In the studied wells, the Mf C
(distal part of the middle ramp) was deposited in
this light zone. The dominant foraminifera in this
light zone are benthic foraminifers (Nummulitide
and Lepidocyclinidae) that Symbiotic with red
algae. The lower parts of the Oligocene-aged
Asmari Formation were deposited in this light
zone

Mesophotic zone: In the studied wells, Mf D
(proximal part of the middle ramp) is the

indicator of this light zone. The foraminifera of
this microfacies mainly have lenticular
morphology, thick shells such as Heterostegina,
Rotalia viennotti, Lepidocyclina, Amphistegina,
Miogypsinoides and with hyaline walls. The
lower parts of the Oligocene Asmari Formation
were deposited under such light conditions.
Euphotic to Photic Zone: This light zone
belongs to shallow environments and the
organisms living in this zone need more light. In
these wells, Mf E, Mf F (from well B) and Mf E-
Mf H (from well A) in the Ruplin-Chatin time
interval indicate deposition in the lower parts of
the euphotic zone.

Nutrients

The terms oligotrophic, mesotrophic, eutrophic
and hypertrophic are used to describe the amount
of nutrients in marine environments.
Oligotrophic zone: In these wells, Mf C from the
distal part of the middle ramp to the Rupelian -
Chatin age indicates the presence of such nutrient
conditions in the wells studied.

Mesotrophic zone: Mf D is related to the
proximal part of the middle ramp of Rupelian -
Chattian age and is deposited in this food zone.
Eutrophic zone: In the studied wells, Mf A, Mf
B (Basin and Outer ramp of Late Eocene age) and
Mf H (open lagoon of the inner ramp of Chattian
age) are related to this zone.

Salinity

The salinity level in fresh waters is the range of
30-40 Psu and in hypersaline waters is higher
than 40 Psu. In the studied wells, based on the
distribution of organisms relative to the salinity
of seawater, two salinity microfacies have been
identified as follows:

Normal salinity microfacies (34-40 Psu): This
salinity is typical of large planktonic and benthic
foraminifera with elongated and lamellar shells
(Lepidocyclina, Heterostegina, Operculina,
Spiuclypeus and Amphistegina) which were
deposited in this salinity range in the studied
wells Mf A - Mf G (Basin environments, Outer
ramp, Middle ramp, Shoal and mound reef belts
from the inner ramp to the Late Eocene -
Rupelian - Chattian age).

Microfacies with salinity >40 Psu: In this
salinity range, porcelanose foraminifers have
increased and hyaline-shelled foraminifers are
also present in smaller numbers Mossadegh et al
(2009). In the studied wells, the Mf H microfacies
has been deposited in this salinity range.

The nature of the substrate: This factor affects
the distribution and dispersion of organisms and
is itself related to water turbulence Beavington et
al (2004). some forms that live on rough, hard,
and coarse-grained substrates have thicker shells
and spindle-shaped shapes, and forms that live on
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soft, muddy substrates have thinner shells. The
presence of large thin-walled hyaline
foraminifers with a micrate background in the Mf
C microfacies indicates soft beds (distal part of
the middle ramp), and the presence of thick-
walled lenticular hyaline and porcelanose
foraminifers in Mf D and Mf H (proximal parts
of the middle ramp, shoal and open lagoon)
indicates hard beds.

hydrodynamic energy: Water movement causes
secondary laminae in foraminifera, which thicken
the layers in the foraminiferal shell. The presence
of elongated Lepidocyclinids with thin walls and
intact shells indicates a calm, undisturbed
environment in the lower parts of the littoral
zone. the presence of large benthic foraminifers
with hyaline walls, elongated, thin shells, and
mud substrate in the distal part of the middle
ramp indicates low water energy and mobility.
the presence of small benthic foraminifers with
hyaline, porcelanose walls, as well as lenticular
to lenticular morphology with thick walls in the
greenstone texture indicates high water energy
and mobility. Such a situation exists in the
studied wells in the proximal middle ramp, shoal
and open lagoon (inner ramp) sections at the base
of the Asmari Formation.

Depth: The changes in the biological depth of
foraminifers in the studied wells are as follows:
In Mf A and Mf B, the presence of planktonic
foraminifers is an indicator of great depths
(basin) and more than 200. The presence of large
benthic foraminifera with thin-walled, elongated
hyaline shells in the Mf C (Heterostegina,
Operculina, and Spiroclypeus) and
Lepidocyclinidae (Eulpidina) indicates depths
greater than 40 m (between 30 and 150 m). Also
presence of small benthic foraminifera with
hyaline shells, lenticular-lens-shaped forms with
thick walls (Nephrolepidina, Heterostegina,
Amphistegina, Rotalia vinoti and
Miogypsinoides) in Mf D indicates depths less
than 50 meters. The presence of porcelanose-
walled foraminifera such as Archaias,
Dendpritina, and miliolids indicates a decrease in
depth and an increase in light, and usually
indicates depths of 0 to 30 meters from the light
(euphotic) zone of the inner ramp.

Symbiotic: Peneroplis and several species of
Archaias that have an algal symbiosis of the
Chlorophycea type Symbiotic a depth of
approximately 73 meters, and species that have a
diatom symbiosis are also able to live in deeper
waters, less than 130 meters. Porcelanose
foraminifera such as miliolids, which lack
symbiotic algae, can survive in the shallowest
parts of lagoons with high salinities. However,
complex non-pore foraminifera such as Archaias,

hich have symbiotic algae, cannot tolerate high
salinities at shallower depths and live at greater
depths than miliolids.

Foraminifera reproduction: The abundant
presence of large and elongated Nummulitid and
lepidocyclinid foraminifers in MFC indicates the
dominance of B form and sexual reproduction,
which indicates stable and stable environmental
conditions, and the presence of lenticular and
lens-shaped foraminifers indicates A form
(asexual reproduction), which is present in the
wells studied in MFD and MFE.

Nutrient stratagy: In the studied wells, genera
such as Spiroclypeous, Eulepidina,
Heterostegina, Operculina with elongated form
(microspherical type) have k-type feeding
strategy, and lenticular lepidocyclines with thick
walls and miliolids (Austrotrillina  and
Quinqueloculin) have r-type feeding strategy
(megalospherical forms). Mf C from the distal
part of the middle ramp is the k-type feeding
strategy index, and Mf D, Mf F, and Mf H from
the proximal, shoal, and open lagoon sections are
the r-type feeding strategy index.

Conclusion

Based on the distribution and dispersal of
planktonic and benthic supersperms, three
Assemblage biozones have been identified. The
age of upper part the Pabdeh Formation is Late
Eocene and the lower part of Asmari formation is
Rupelian - Chattian.

Based on the study of microfacies, 8 microfacies
from well A and 6 microfacies from well B were
identified related to the basin belts, outer ramp,
middle ramp (distal and proximal parts) and inner
ramp (shoal, patch reef, and open lagoon).

Based on the study of paleoecology in the studied
wells, salinity is normal to slightly higher than
normal range (34-40 Psu - >40 Psu), light
changes conditions in the upper part of the
Pabdeh Formation are Aphotic while in the lower
part of the Asmari Formation are Oligophotic. the
nutrients are oligotrophic to eutrophic range. In
the lower part of the Asmari Formation, due to
greater depth and less hydrodynamic energy, the
bed is soft and stable, which causes the elongated
and thin morphology of the foraminifers. At
shallower depths, there is more hydrodynamic
energy, and the bed is hard and unstable, which
is why their body morphology is lenticular and
lens-shaped. At the base of the Asmari
Formation, presence of large benthic foraminifers
indicates sexual reproduction while a K feeding
strategy, the presence of lenticular foraminifers
with a large proloculus indicates asexual
reproduction and a r feeding strategy.



