غلظت و گونه‌سازی عناصر سنگین در خاک‌ها و گیاهان اطراف معدن مس ایجو (شمال غرب شهر
بُبک، استان کرمان)

عنوان اسکیپ 1م و افسین قشلاقی

1و 2- دانشکده علوم زمینی، دانشگاه صنعتی شاهد، اردبیل
نویسنده درمان

چکیده

در این مطالعه غلظت و گونه‌سازی فلزات در خاک و هیوانتین نمونه‌های درجه در معدن مس
پورقیری هاچ، بُبک، استان کرمان، مورد بررسی قرار گرفت، بدین منظور تعادل ۲۴ نمونه خاک و ۸
نمونه گیاه درون معدن، جمعیت وی و هدف بررسی استفاده نمونه‌های خاک مطالعات گونه‌سازی انجام گرفت. نتایج داد که غلظت فلز Cu در محله‌های مربوط به آهن Cu در محصولی مربوط به خاک Cu در محصولی
رحش‌های استاندارد تجوید شده. هیوانتین بر روی برخی از نمونه‌های خاک مطالعات غلظت فلزی اندازه گرفت. نتایج داد که غلظت فلز از معدن گزارش‌کننده، بیشترین غلظت و غنی‌شدگی می‌تواند در توندرا Hg عنصر مس ایجو، و غنی‌شدگی با

واژه‌های کلیدی: آلودگی خاک، عناصر سنگین، گونه‌سازی، مس ایجو، گیاه درازه، معدن مس ایجو

1- مقدمه

خاک نقش حیاتی در اکوسیستم‌های طبیعی ایفا می‌کند
و در حقیقت مخزن اصلی دریافت کننده فلزات (از منابع
طبیعی یا انسانی) است. قطع نظر از منشأ، زمانی که
فلزات در مدار بیشتری از حد مجاز وارد می‌شوند، می‌تواند تاثیر بات‌آلودگی خاک شوند و در این
صورت این آلودگی به خاک به‌کارآمدی به آن می‌کند، به

مس پورقیری، با توجه به عملکرد گسترده محصولات
گرمابی، دارای زون‌های مختلف کاسی و انتراسیون
هستند و این کانی‌ها و درگرسانی‌ها یکی از عناصر
باید تحقیق عنصر فلزی و وزه عنصر سنگین محاسب
می‌شوند (ورز، ۲۰۱۵).

این به تحقیق محیطی ناشی از حضور عناصر سنگین در
جاک، نشان ویژه به غلظت کل از آنها نیست، بلکه به
میزان تحقیق و زیست‌دستی‌پذیری آنها (و جایگاه
در اجرای خاک) نیز بستگی دارد که در نهایت بر
آزاد شدن آنها و هر آن به دیگر اجزای اکوسیستم، منحنی
ابهام را که گیاهان اثر می‌گذارند (آبلوین اند همکاران،
۲۰۰۵) با استفاده مدل‌های ویژه به محیط‌های
معدنی، نیاز به درک دسترسی از غلظت فلزات، شدت
الودگی، مشاهده و گونه‌سازی فلزات در محیط خاک دارد.
روش استخراج ترنبیک یکی از اکبرترین روش‌های برای ارزیابی تحرک عنصر سنگین در خاک‌های اندیکه است. این روش اطلاعات کافی در مورد توزیع عنصر در سطح یا به‌خوبی مختلف خاک را ارائه می‌دهد که بسیاری از اثرات بالقوه ناشی از آن‌ها می‌تواند در خاک می‌کند.

قیمت‌های تابدیپر (فاز اول) متعلق به قیمت‌های فاز دوم قیمت‌های متعلق به گیاه‌های (فاز دوم) قیمت‌های تابدیپر (فاز اول) کنترل می‌کنند. فاز دوم فاز استرداد راهی استرداد راهی می‌باشد. به در نظر گرفتن قیمت‌های تابدیپر (فاز اول) به روش از فرآیندی فاصله‌ای فاز دوم دوم به دو کانالی به گیاه‌های (فاز دوم) می‌باشد. و در نظر گرفتن قیمت‌های تابدیپر (فاز اول) به روش از فرآیندی فاصله‌ای فاز دوم دوم به دو کانالی به گیاه‌های (فاز دوم) می‌باشد.

یافته‌های نوین زمین‌شناسی کاربردی. دوره 13، شماره 25، بهار و تابستان 98
نمی‌نمیهای گیاه نیز در ابتدا اندام‌های روژیمنی (ساقه و پرگ) و زیرزمینی (ریشه) انجام شده و پس از شستشو در آب مقطع به کمک هاواندستی پودر گردن‌بندن، نمی‌نمیهای پودر شده سپس در کوره گرافیکی و در دما حدود 55 درجه سانتی‌گراد تبدیل به خاک‌سازی که به فناوری اتوماتیک (برای تعیین درصد سخت و رس) و از الگ کردن (برای تعیین درصد ماسه) استفاده شد. ماده آلی خاک نیز به روش آسیاب بوسیله دیگری در پناسب اندازه‌گیری گردیدن (روپوزیکی، ۱۹۹۵). در مورد

شکل ۱: نقشه زمین‌شناسی - دگرگونی منطقه معدنی ایجو و موقعیت نقاط نمونه‌برداری از خاک و گیاه (برگرفته از طالبی، ۱۳۸۴) با کمیت تغییرات

که هنگ منبع انسان‌زاده دریای آن را وجود ندارد. ضریب غنی‌شدنی از رابطه زیر محاسبه می‌شود (چن و همکاران، ۲۰۰۷):

\[
\text{EF} = \frac{C_{1\text{Me}}}{C_{1n}}
\]

۱ رابطه

در آن رابطه \(\text{EF} \) ضریب غنی‌شدنی، \(C_{1\text{Me}} \) و \(C_{1n} \) غلظت فلز \(C_{1\text{Me}} \) در محیط مورد نظر (نمی‌نمیهای خاک) و غلظت عنصر \(C_{1n} \) مراجع در محیط مورد نظر (نمی‌نمیهای خاک) و غلظت همان فلز در محیط میان (بوسته زمین). غلظت

علامت‌های تحلیل داده‌ها

به منظور ارزیابی میزان غنی‌شدنی و تعیین کمی شدت آلودگی در خاک‌های منطقه، شاخص‌های مختلف و روش‌های مختلف است انتخاب ضریب غنی‌شدنی با محاسبه گردن‌بندن. بر اساس ضریب غنی‌شدنی می‌توان مقادیر که نسبت به مقادیر مثبت به طبیعت ان نسبت در موقعیت محاسبه ضریب غنی‌شدنی روی می‌مانند برای ارزیابی غلظت عنصر مورد نظر در محیط در مقایسه با غلظت همان عنصر، در محیطی است
عنصر مرجع در محیط مینا (پوسته زمین) است. در این
در جدول 1، هدند، رابطه گیاهی بر اساس مقادیر
آن اورهده شده است (مولر، 1969).
ضریب زمین (ESP) که توسط مولر در سال
1969، معروف شده است یکی درگیر از شاخه‌های کمی به
متغیر تعیین شد آلودگی خاک‌ها به منطقه است.
این شاخه از رابطه 2 محاسبه می‌شود (زن و همکاران،
2012).

\[\text{Igeo} = \frac{C_{\text{sample}}}{C_{\text{root}}} \]

در این رابطه، C_{\text{sample}}، غلظت فلز در
نمونه خاک یا روبه (B_i) غلظت فلز در ماده زمینه
(به‌کاچیگن شیل) است. ضریب ت، 1/5 به عنوان ضریب
تصمیح اثرات احتمالی نشی از تبلوری‌های مختلف
نظر گرفته می‌شود. ولی بر اساس این شاخه، خاک‌ها
از نظر دیرجه آلودگی به 7 گروه طبقه‌بندی می‌شود (جدول
3).

به منظور ارزیابی غلظت‌های فلزات در خاک و یا گیاه از
شاخه‌های پیوندی‌سازی، همچنین ضریب زیست‌تمرکز
(BCF) و ضریب انتقال (TF) استفاده می‌شود. ضریب
زیست‌تمرکز، نشاندهنده توانایی گیاهان برای جذب
فلزات از خاک است و در حقیقت میزان انتقال فلز از
خاک به گیاه را نشان می‌دهد. این ضریب از رابطه زیر
محاسبه می‌شود (دبیرکی و بوکرز، 1989):

\[\text{BCF} = \frac{C_{\text{root}}}{C_{\text{soil}}} \]

که در آن C_{\text{root}} غلظت فلز در ریشه و
C_{\text{soil}} غلظت همان فلز در خاک است. گونه‌گیاهی دارای مقادیر
باهای یک فلز خاص را می‌توان به عنوان
گونه نتیجه‌گیری کنند که آن فلز در نظر گرفت (بون و همکاران،
2005). ضریب انتقال (TF) نشان‌دهنده گیاهی برای انتقال فلزات از
رشته به اندازه‌های زیست‌ماده به گیاهان از طریق
رابطه زیر محاسبه می‌شود (مولر، 1969):

\[\text{TF} = \frac{C_{\text{root}}}{C_{\text{soil}}} \]

در این رابطه، C_{\text{root}} غلظت مورد نظر در اندازه‌ای
همیل‌زیست‌منی (ورنژی) و C_{\text{soil}} غلظت فلز مورد نظر در ریشه
(اندازه‌زیست‌منی) است. مقادیر کمتر از 1 برای ضریب

1 Bio-concentration Factor
2 Transfer Factor
خاک اندامگیری شد که نتایج آن در جدول ۴ و شکل ۴ نشان داده شده است. بر اساس نتایج بدست آمده، خاک‌های منطقه مورد مطالعه از نظر pH در رده خاک‌های تندای فنیباگی و قلبیابی زیاد قرار می‌گیرند. قلب‌بودن خاک‌های منطقه، که به دلیل حضور کلسیم (کلسیت) در آنها است، عامل مهم در تمرکز عناصر سنگین محسوب می‌شود (غیرانه و فشالی، ۲۰۰۷، تیسر و همکاران، ۱۹۹۷، میزان ماده آلی خاک از

جدول ۱. رده‌بندی مقادیر ضریب غنی‌شدگی

<table>
<thead>
<tr>
<th>فاکتور غنی‌شدگی</th>
<th>(EF) غنی‌شدگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>کمتر از ۱</td>
<td>بدن غنی‌شدگی</td>
</tr>
<tr>
<td>۱ تا ۳</td>
<td>غنی‌شدگی اندک</td>
</tr>
<tr>
<td>۳ تا ۵</td>
<td>غنی‌شدگی متوسط</td>
</tr>
<tr>
<td>۵ تا ۱۰</td>
<td>غنی‌شدگی نسبتاً شدید</td>
</tr>
<tr>
<td>۱۰ تا ۲۵</td>
<td>غنی‌شدگی شدید</td>
</tr>
<tr>
<td>۲۵ تا ۱۰۰</td>
<td>غنی‌شدگی خیلی شدید</td>
</tr>
<tr>
<td>بیش از ۱۰۰</td>
<td>غنی‌شدگی بیشتر شدید</td>
</tr>
</tbody>
</table>

جدول ۲. میزان آلودگی خاک بر اساس مقادیر شاخی زمین‌شناسی در طبقه‌بندی مولر (موارد، ۱۹۶۹)

<table>
<thead>
<tr>
<th>شدت آلودگی</th>
<th>فرمول مولر</th>
</tr>
</thead>
<tbody>
<tr>
<td>کمتر از ۰</td>
<td>درجه آلودگی</td>
</tr>
<tr>
<td>۰ تا ۱۰</td>
<td>بدن آلودگی</td>
</tr>
<tr>
<td>۱ تا ۲۰</td>
<td>بدن آلودگی تا آلودگی متوسط</td>
</tr>
<tr>
<td>۲۰ تا ۴۰</td>
<td>آلودگی متوسط تا شدید</td>
</tr>
<tr>
<td>۴۰ تا ۷۰</td>
<td>آلودگی شدید</td>
</tr>
<tr>
<td>۷۰ تا ۱۰۰</td>
<td>آلودگی شدید تا بیش‌ترهای آلوده</td>
</tr>
<tr>
<td>بیش از ۱۰۰</td>
<td>بیش‌ترهای آلوده</td>
</tr>
</tbody>
</table>

جدول ۳. خلاصه‌ای از روش استخراج ترنشی فاز

<table>
<thead>
<tr>
<th>واکنشگر</th>
<th>شرایط استخراج</th>
<th>فاز</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱ ساعت در دمای ۲۵ °C</td>
<td>۸ ml of ۱ mol.l⁻¹ MgCl₂ (pH: 7) (Exch)</td>
<td>نابالغ‌نشستگی</td>
</tr>
<tr>
<td>۵ ساعت در دمای ۲۵ °C</td>
<td>۸ ml of ۱ mol.l⁻¹ NaOAc (pH: 5 with acetic acid) (Carb)</td>
<td>متصول به کربنات‌ها</td>
</tr>
<tr>
<td>۶ ساعت در دمای ۹۵ °C</td>
<td>۲۰ ml of NH₃-HCl, ۰.۰۴ mol.l⁻¹ in ۲۵% w/v HOAc (pH-۲) (MnO-FeO) منحل به اکسیدهای آهن و</td>
<td></td>
</tr>
<tr>
<td>۲ ساعت در دمای ۸۵ °C</td>
<td>۳ ml of ۰.۰۲ mol.l⁻¹ HNO₃/۵ ml of ۳۰% m/v H₂O₂ (OM) منحل به ماده آلی</td>
<td></td>
</tr>
<tr>
<td>۳ ساعت در دمای ۸۵ °C</td>
<td>+۳ ml of ۳۰% m/v H₂O₂ (OM) منحل به ماده آلی</td>
<td></td>
</tr>
<tr>
<td>۲۰ دقیقه در دمای ۲۵ °C</td>
<td>+۵ ml of ۳.۲ mol.l⁻¹ NH₄OAc (Res) منحل به فاز بالا مانده</td>
<td></td>
</tr>
</tbody>
</table>
جدول 4. پراامرت‌های pH و ماده آی اندام‌گیری شده در نمونه‌های خاک معدن ای‌جو

<table>
<thead>
<tr>
<th>ماده آی (%)</th>
<th>pH شاره</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/10</td>
<td>7.85</td>
<td>1/10</td>
<td>7.85</td>
<td>1/10</td>
<td>7.85</td>
<td>1/10</td>
<td>7.85</td>
</tr>
<tr>
<td>1/20</td>
<td>7.80</td>
<td>1/20</td>
<td>7.80</td>
<td>1/20</td>
<td>7.80</td>
<td>1/20</td>
<td>7.80</td>
</tr>
<tr>
<td>1/30</td>
<td>7.75</td>
<td>1/30</td>
<td>7.75</td>
<td>1/30</td>
<td>7.75</td>
<td>1/30</td>
<td>7.75</td>
</tr>
<tr>
<td>1/50</td>
<td>7.70</td>
<td>1/50</td>
<td>7.70</td>
<td>1/50</td>
<td>7.70</td>
<td>1/50</td>
<td>7.70</td>
</tr>
</tbody>
</table>

شکل 2. مثلث طبقه‌بندی یافته‌های (وزارت کشاورزی آمریکا) و موقعیت نمونه‌های مورد مطالعه بر روی آن

که نش نمایانگر رسمی از در ابزار این عناصر در خاک‌های منطقه نمایه نشان می‌دهد (تسی و همکاران، 1997). نیکل و تری‌سیتروین غلظت‌های زون دگرگانی آرژیلیک و سیس فیلیک نشان می‌دهد که مجدداً بیانگر تأثیر فرآیندهای واردگی و تشکیل کاتی‌های رسی در ابزار و یا ترکیب این دو فلز در خاک‌های منطقه است.

نمونه‌های دگرگانی آرژیلیک غلظت‌های آلودگی عناصر سنگین را در آن است. همان‌طور که مشاهده می‌شود، غلظت‌های آلودگی همه فلزات از مانند آن‌ها در خاک‌های عشایری مهم‌تر است.

بر اساس نتایج بدست‌آمده ممکن است غلظت‌های آلودگی عناصر سنگین در نمونه‌های خاک برداشت شده، در جدول 4 آورده شده است. همان‌طور که مشاهده می‌شود، غلظت‌های آلودگی همه فلزات از مانند آن‌ها در خاک‌های عشایری مهم‌تر است.

۴-۲- غلظت و آلودگی عناصر سنگین در نمونه‌های خاک

خاک

آمار توصیفی غلظت عناصر سنگین در نمونه‌های خاک برداشت شده، در جدول 5 آورده شده است. همان‌طور که مشاهده می‌شود غلظت‌های آلودگی از مانند آن‌ها در خاک‌های عشایری مهم‌تر است.

بر اساس نتایج بدست‌آمده ممکن است غلظت‌های آلودگی عناصر سنگین در نمونه‌های خاک برداشت شده، در جدول 4 آورده شده است. همان‌طور که مشاهده می‌شود، غلظت‌های آلودگی همه فلزات از مانند آن‌ها در خاک‌های عشایری مهم‌تر است.
در گرنسن آرزیلیک است که به خاطر داشتن یک سطحی منفی که دارای قاتل کاتونه‌ای فلز و جذب یافته در جذب قاتل می‌باشد (شکل ۵) یک نمونه باشد. این نمونه حروف‌داری در جذب قاتلی باشد (شکل ۴ و جدول ۳). غیب‌پذیری اصلی نیز در سطحی که کاتزایی اصلی (به صورت کالکوپریت) در این زون رخ می‌دهد.

جدول ۵‌ آمار توصیفی غلظت عنصر (بر حسب mg/kg) در نمونه‌های خاک برداشت شده از زون‌های مختلف دگرسانی

<table>
<thead>
<tr>
<th>عنصر</th>
<th>دگرسانی</th>
<th>آماره</th>
<th>انحراف معیار</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>بیشتر</td>
<td>۱۹/۶۰</td>
<td>۱۴/۵۵</td>
</tr>
<tr>
<td>Zn</td>
<td>پاتسیک</td>
<td>۲۳/۵۸</td>
<td>۲۴/۹۴</td>
</tr>
<tr>
<td>Ni</td>
<td>میانگین</td>
<td>۴۰/۸۴</td>
<td>۵۷/۵۰</td>
</tr>
<tr>
<td>Pb</td>
<td>فیلک</td>
<td>۹۲/۴۴</td>
<td>۱۰۰/۸۴</td>
</tr>
<tr>
<td>As</td>
<td>میانگین</td>
<td>۱۹/۰۶</td>
<td>۲۳/۰۹</td>
</tr>
<tr>
<td>Cr</td>
<td>بیشتر</td>
<td>۱۱/۰۲</td>
<td>۱۱/۲۸</td>
</tr>
<tr>
<td>Zn</td>
<td>پاتسیک</td>
<td>۲۹/۵۸</td>
<td>۳۷/۵۰</td>
</tr>
<tr>
<td>Ni</td>
<td>میانگین</td>
<td>۱۹/۰۹</td>
<td>۲۳/۰۹</td>
</tr>
<tr>
<td>Pb</td>
<td>فیلک</td>
<td>۹۲/۴۴</td>
<td>۱۰۰/۸۴</td>
</tr>
<tr>
<td>As</td>
<td>میانگین</td>
<td>۱۹/۰۶</td>
<td>۲۳/۰۹</td>
</tr>
<tr>
<td>Cr</td>
<td>بیشتر</td>
<td>۸۸/۵۷</td>
<td>۸۸/۵۷</td>
</tr>
<tr>
<td>Zn</td>
<td>پاتسیک</td>
<td>۳۸/۴۷</td>
<td>۴۸/۴۷</td>
</tr>
<tr>
<td>Ni</td>
<td>میانگین</td>
<td>۱۹/۰۹</td>
<td>۲۳/۰۹</td>
</tr>
<tr>
<td>Pb</td>
<td>فیلک</td>
<td>۹۲/۴۴</td>
<td>۱۰۰/۸۴</td>
</tr>
<tr>
<td>As</td>
<td>میانگین</td>
<td>۱۹/۰۶</td>
<td>۲۳/۰۹</td>
</tr>
</tbody>
</table>

شکل ۳ ضریب غنی کننده عناصر مورد بررسی در نمونه‌های خاک منطقه مورد مطالعه با توجه به زون‌های دگرسانی

جدول ۶ کاتیون‌های اصلی موجود در نمونه سگ برداشت شده از زون گرنسن آرزیلیک

<table>
<thead>
<tr>
<th>کاتیون های اصلی</th>
</tr>
</thead>
<tbody>
<tr>
<td>آلت (۵/۹۸)</td>
</tr>
<tr>
<td>ابی‌گیت (۱۹/۱۳)</td>
</tr>
<tr>
<td>آلت (۱۹/۱۳)</td>
</tr>
</tbody>
</table>

متن در سطح

مورد مطالعه، بیشتر در نمونه‌های مربوط به زون آرسیلیک حضور داشت و به همین دلیل انتظار می‌رود که در منطقه توانایی بالایی در جذب قاتلی داشته باشد (شکل ۴ و جدول ۳). غیب‌پذیری اصلی نیز در جذب قاتلی باشد (شکل ۵) یک نمونه حروف‌داری در جذب قاتلی باشد (شکل ۴ و جدول ۳). غیب‌پذیری اصلی نیز در سطحی که کاتزایی اصلی (به صورت کالکوپریت) در این زون رخ می‌دهد.
به طور کلی میانگین ضرایب غنی‌شدگی عنصر مورد مطالعه، به ترتیب زیر کاشش‌های می‌باشد:

As (1.08Æ) > Pb (0.89Æ) > Ni (0.73Æ) > Zn (0.4Æ) > Cu (0.36Æ) > Cr (0.2Æ)

بر اساس طبقهبندی صنعت و همکاران (2007) (جدول 2) در حالتها منطقه کروم غنی‌شدگی اندک، نیکل، مس و روی، غنی‌شدگی متوسط، سرب، غنی‌شدگی نسبتاً شدید و آرسنیک غنی‌شدگی شدید نشان می‌دهد. بررسی میانگین شاخص زمین‌نابینا نمونه‌های حاکی به توجه به زون‌های دگرسانی (شکل 5)، نشان می‌دهد که عنصر روی، سرب و آرسنیک، در زون دگرسانی آژیریک بیشترین نرخ شاخص زمین‌نابینا در دارای هستند و حاکی منطقه نسبت به این فازات از لحاظ شدت آلودگی

![متن علمی و شکل‌ها]

شکل 5. میانگین ضرایب زمین‌نابینا عنصر سنگین در نمونه‌های حاکی به توجه به زون‌های دگرسانی

شکل 4. نتایج XRD نمونه برداشت شده از زون دگرسانی آژیریک در معدن ایام
4- پخش ماسه‌ای خاک هیپوتمیستیک مثبت
معادل‌یا فلاتر نشان نمی‌دهد.
5- در نمونه‌های خاک مورد مطالعه، فلز، با هیچ یک از
پارامترهای خاک و فلاتر دیگر ارتباط معنی‌دار نشان نمی‌دهد، که احتمالاً به دلیل مشابه متفاوت این فلز، در
نمونه‌های خاک مورد مطالعه است. (فرقای تهی و ور، 1391 (136) این مشابه متفاوتی می‌تواند ناشی از فرآیندهای
کالی‌سازی فلز در منطقه باشد.
7- کروم و نیکل هم‌مثبتی مثبت بالایی از خود
نشان می‌دهد (1910 > p, r > 0.443) که این می‌تواند
دلیل مشابهی مشترک این دو فلز (زنیمی‌زد) و رفتار
ژنوپشیدنی مشابه آنها در نمونه‌های خاک مورد مطالعه
باشد.
جدول 7: ضرایب همبستگی بیرون بین عناصر و پارامترهای فیزیکوchemیایی نمونه‌های خاک

<table>
<thead>
<tr>
<th>pH</th>
<th>OM</th>
<th>Clay</th>
<th>Silt</th>
<th>Sand</th>
<th>Pb</th>
<th>Zn</th>
<th>Cr</th>
<th>Ni</th>
<th>As</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.135</td>
<td>0.084</td>
<td>-0.046</td>
<td>0.053</td>
<td>0.041</td>
<td>0.011</td>
<td>0.005</td>
<td>1</td>
<td>1</td>
<td>0.074</td>
</tr>
<tr>
<td>1</td>
<td>0.070</td>
<td>0.691</td>
<td>0.094</td>
<td>0.046</td>
<td>0.074</td>
<td>0.691</td>
<td>0.580</td>
<td>0.053</td>
<td>0.074</td>
<td>0.070</td>
</tr>
<tr>
<td>Clay</td>
<td>0.009</td>
<td>0.872</td>
<td>0.094</td>
<td>0.053</td>
<td>0.113</td>
<td>0.024</td>
<td>0.011</td>
<td>0.009</td>
<td>0.011</td>
<td>0.009</td>
</tr>
<tr>
<td>Silt</td>
<td>0.024</td>
<td>0.580</td>
<td>0.053</td>
<td>0.053</td>
<td>0.143</td>
<td>0.051</td>
<td>0.005</td>
<td>0.024</td>
<td>0.014</td>
<td>0.024</td>
</tr>
<tr>
<td>Sand</td>
<td>0.024</td>
<td>0.051</td>
<td>0.053</td>
<td>0.053</td>
<td>0.051</td>
<td>0.046</td>
<td>0.058</td>
<td>0.046</td>
<td>0.051</td>
<td>0.046</td>
</tr>
</tbody>
</table>

4-3- تحلیل مؤلفه اصلی
در جدول 8 نتایج حاصل از تحلیل مؤلفه اصلی ارائه شده
است. شکل 6 نمودار معنی‌دار مؤلفه‌های استخراج
شده از نمونه‌های سه‌تایی در مولفه اول، فلزات سرب، روی و
رژیسیک و در مولفه دوم، فلزات کروم و نیکل با راجع‌تار
بالایی نشان می‌دهد (0.5/0.705). در مولفه سوم، فلز سبز به
صورت مجزا قرار گرفته است. بر اساس این نتایج، می‌توان
صحیح است‌بند کرد که سرب، روی و رژیسیک احتمالاً
منبع پیش‌کاری دارند. با توجه به اینکه این سه فلز
پیشین تحقیق‌ها در دفترچه‌ای از پیش‌کاری‌های انسانی
می‌توان تمرکز آنها را به وجود کالی‌ریزی رسی در این
زون نسبت داد. قراردادگیری کروم و نیکل هم در یک مؤلفه
به دلیل وجود مشابه سه‌تایی رفتار خاکی و رفتار قراردادگیری
مشابه آنهاست. قراردادگیری فلز مس در یک مؤلفه جداگانه

7- کروم و نیکل هم‌مثبتی مثبت بالایی از خود
نشان می‌دهد (1910 > p, r > 0.443) که این می‌تواند
دلیل مشابهی مشترک این دو فلز (زنیمی‌زد) و رفتار
ژنوپشیدنی مشابه آنها در نمونه‌های خاک مورد مطالعه
باشد.
دوم بر حسب اختلاف درجه وابستگی فنکتی می‌تواند تا حدی به منشا انسان‌زا در فنکتی‌های خاک (استخراج کانسک) مربوط دانست (وزارت کشاورزی آمریکا 1987). در این منطقه، هنوز معدنکاری در میزان بسیار وجد و ندارد؛ بنابراین بیشتر پراکنش عناصر از طریق میانه‌های طبیعی و زنده‌دهی گذرانی کنترل می‌شود.

جدول 8 نتایج حاصل از تحلیل مواد اصلی

<table>
<thead>
<tr>
<th>مواد</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>80.3</td>
<td>0.146</td>
<td>0.199</td>
</tr>
<tr>
<td>Zn</td>
<td>94.6</td>
<td>0.182</td>
<td>0.112</td>
</tr>
<tr>
<td>Cr</td>
<td>97.2</td>
<td>0.110</td>
<td>0.077</td>
</tr>
<tr>
<td>Ni</td>
<td>2.3</td>
<td>0.047</td>
<td>0.143</td>
</tr>
<tr>
<td>As</td>
<td>8.56</td>
<td>0.101</td>
<td>0.077</td>
</tr>
<tr>
<td>Cu</td>
<td>0.80</td>
<td>0.050</td>
<td>0.082</td>
</tr>
</tbody>
</table>

شکل 8 نمودار سه بعدی تحلیل مواد اصلی استخراج شده

شکل 9 دندوگرام طبقه‌بندی عناصر سنگین در فنکتی‌های خاک مورد مطالعه
فلز نیکل و کروم احتمالاً به صورت چاپگریزی بونی در شبکه کالی‌های رسی (رون آزمایشی) حضور دارد. با اینکه، میزان تکامل به حضور از فاز کربناته‌ها را دارد (تامین و همکاران، 2011)، این فلز در نمونه‌ها مورد مطالعه با فاز سوم (پیوند با اکسیدهای آهن و مگنزیوم) و اخیر (فلز باقیمانده) همراه است. وجود سرب در فاز کربناته به حضور آن در کالی‌های کربناتی مانند کلسیت (CaCO₃) است (تسیم و همکاران، 1997). این کربناته به فازبی‌های کربناته دارد (فرقانی و مر، 1391). در مورد فلز Ni به نسبت بالا، این فلز در سومین فاز (مستقل به اکسیدهای آهن و مگنزیوم) و 14/80 در فاز دوم (پیوند با کربناته) حضور دارد. مهروی فلز سبز با فاز کربناته به حضور فلز Ni این عنصر در کالی‌های کربناتی مانند مالیک – و ارویزی است. اروستیک نیز برخی به‌هم‌بستگی را با فاز باقی‌مانده نشان می‌دهد همچنین به‌کمک این شکل 7 بی‌پایان حدود 10 درصد از غلظت کل آن با اکسیدهای آهن و مگنزیوم همراه است به‌بناهای مدل خیلی مناسب باعث می‌شود. عامل و همچنین کالی‌های رسی در جذب شفاف فزیک اروستیک است. در این زمینه نیز تحقیق در دسترس پذیرفته‌ای فلز در نمونه‌های خاک به صورت زیر است:

\[
\text{Cu} > \text{Ni} > \text{As} > \text{Pb} > \text{Zn} > \text{Cr}
\]

5- گونه‌سازی عنصر سنگین در نمونه‌های خاک

شکل 8: نشان‌دهنده توزیع عنصر Cu در فازهای مختلف استخراج شده است. Cu به ترتیب میان فلزات متصل به فازهای تبادل‌پذیر، کربناته، اکسیدهای آهن و مگنزیوم (کاهش‌پذیر)، ماده آلی (کاهش‌پذیر) و باقی‌مانده هستند. روند زیست‌سیری عنصر سنگین، به ترتیب زیر کاهش می‌یابد: Exch > Carb > MnO-FeO > OM > Res

که این روند با افزایش قدرت اتصال فلزات به فازهای مختلف خاک انطباق دارد. نتایج استخراج ترتیبی نشان می‌دهد که فلزات مورد مطالعه در فاز تبادل‌پذیر (فاز استخراج شده در مرحله اول) کمترین غلظت را داشته و تمکرک بالایی در فاز باقی‌مانده دارند (مس: 76/47، نسبت: 77/46، روی: 95/59). غلظت کم فلزات در فازهای آلی و دوم و بودو به فلزی بودن خاک می‌گردد.

6- غلظت فلزات در نمونه‌های گیاه درمان

آمار توصیفی غلظت برخی فلزات در اندام‌های زیرزمینی (Root) و روی‌زمینی (Shoot) نمونه‌های گیاه درمانه، در جدول 9 اردوگاه شده است. مقایسه غلظت عنصر مورد مطالعه در اندام‌های زیرزمینی (Components and shoots) با اندام‌های روی‌زمینی (Root and Shoot) نشان می‌دهد که در این دسته‌ها داده‌ها بین‌نیمی به‌دست می‌آورد.
نتیجه‌گیری
بر اساس نتایج این تحقیق مشخص شد که کانی‌سازی طبیعی و زورهای دگرسانی مهم‌ترین عامل افزایش غلظت کل فلزات در خاک و گیاهان منطقه ایجاد نمی‌کند. در نمونه‌های خاک مورد مطالعه، فلزات آرسنیک، سرب و روی در زون دگرسانی آزبیلک و فلز مس در زون پتاسیک، بیشترین میزان شاخص زمین‌نابشته را داشته و خاک منطقه نسبت به این فلزات از لحاظ شدت آلودگی آلودگی بهتر استفاده از بخش‌هایی از ریشه گیاه است. غلظت شیشه فلز آرسنیک در تمامی نمونه‌های گیاه کمتر از حد اشکارسازی دستگاه (1/0 میلی گرم بر کیلوگرم) بوده است.

در شکل 9 میانگین ضرب زیست‌تمرکز فلزات مورد مطالعه به‌طور کل نتایج حاصل از محاسبه این ضرب نشان می‌دهد که بالاترین BCF است و کمترین Ni مربوط به فلز Cu متعلق به فلز Cu است و کمترین BCF نیز مربوط به فلز سرب است. با این حال با توجه به مقادیر محاسبه شده تمامی عناصر، دارای ضرب تجمع می‌باشد که از 1 هستند. بنابراین گیاه درمانه نمی‌تواند به عنوان گونه

جدول 9. آمار توصیفی غلظت عناصر سنگین در اندام‌های نسبی و زردزمینی در گیاه درمانه (مقادیربر حسب mg/kg)

<table>
<thead>
<tr>
<th></th>
<th>Cr</th>
<th>Cu</th>
<th>Zn</th>
<th>Ni</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(زره‌زمینی)</td>
<td>4/3</td>
<td>117</td>
<td>5/7</td>
<td>4/7</td>
<td>3/1</td>
</tr>
<tr>
<td></td>
<td>6/2</td>
<td>441</td>
<td>5/2</td>
<td>2/3</td>
<td>1/1</td>
</tr>
<tr>
<td></td>
<td>4/8</td>
<td>6/8</td>
<td>7/8</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>Shoot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(زهره‌زمینی)</td>
<td>3/9</td>
<td>411</td>
<td>3/4</td>
<td>1/3</td>
<td>1/4</td>
</tr>
<tr>
<td></td>
<td>2/1</td>
<td>424</td>
<td>4/4</td>
<td>4/4</td>
<td>3/1</td>
</tr>
<tr>
<td></td>
<td>5/1</td>
<td>493</td>
<td>5/2</td>
<td>5/2</td>
<td>1/1</td>
</tr>
<tr>
<td></td>
<td>4/3</td>
<td>441/2</td>
<td>3/3</td>
<td>1/2</td>
<td></td>
</tr>
</tbody>
</table>

شکل 9. میانگین ضرب زیست‌تمرکز فلزات مورد مطالعه

خود اختصاص می‌دهد. بررسی میانگین شاخص زمین‌نابشته نمونه‌های خاک با توجه به زورهای درگرسانی نشان داد که فلزات رود سرب و آرسنیک در زون درگرسانی آزبیلک و فلز مس در زون درگرسانی پتاسیک، بیشترین میزان شاخص زمین‌نابشته را داشته و خاک منطقه نسبت به این فلزات از لحاظ شدت آلودگی آلودگی متوسط را نشان می‌دهد. با استفاده از

نتایج ضریب همبستگی، میزان دویافکته که احتمالاً عناصر آرسینیک، سریو و روی با یکدیگر بیشتر مشابهی دارند. همچنین عناصر کروم و نیکلا نیز احتمالاً مشابهی یکسانی دارند. در این مطالعه، فاز مس، با همیشه یک از باکتری‌های خاک و فلزات روی مری، رابطه میان‌دار نشان نمی‌دهد. نتایج گوناگون‌سانی فلزات در مخلوط‌های خاک نشان داد که فلزات ماده‌های در فاز تبادل‌یابی کم‌ترین گلفت را داشته و نیز در مولکول‌های در فاز باقی‌مانده کمتری داشتند. حضور عناصر در فاز باقی‌مانده با گذر منشاً طبیعی و زمین نزدیک آن است. محاسبات ضریب تجمع زیستی نیز اشکال مختلفی که فاز Cu بالاترین ضریب داشته و البته تنوع مصدر به فاز رهگیری است. بر اساس نتایج بدست آمده از مطالعه مشخص شد که منشاً بیشتر فلزات در خاک‌های منطقه مورد مطالعه (در شرایط عالی) طبیعی است با این حال تشخیص تعیین‌های مناسبی و استخراج کانسک در آینده می‌تواند بهبود گلفت فلزات و یا دسترس‌پذیری آنها در محیط خاک و گیاه‌شک‌ها که می‌یابد در ارزیابی‌های زمین‌محیطی آنی منظم قرار گیرد.

تیتر و تکمیل
در خانه‌های توضیح‌گذار مقاله لازم می‌دانند از امر تحقیق توسعه و بهبود تحقیقات آب و میخی‌ریست به کار کنند. می‌تواند در اثر افزایش گلفت فلزات و یا دسترس‌پذیری آنها در محیط‌های، شاخص که می‌یابد در ارزیابی‌های زمین‌محیطی آنی منظم قرار گیرد.

متابعات
طالبی، م. (1484) مطالعه لیتوزیتوشیمی در دسته‌بندی و سیالات درگیر کانسک مس یورپریس ایو، شمال غرب، مدارک مس، پایان‌نامه، کارشناسی ارشد، دانشگاه علوم زمین، دانشگاه تربیت مدرس، ص 205.

فرقانی تهرانی، غ. و مر. ف. (1391) کاربرد نکاتی‌های گوناگونی عناصر جزء در رسیدگی و خاک، اولین همایش تخصصی کاربرد شیمی در علوم زمین، سازمان زمین‌شناسی و اکتشافات معدنی کشور

Concentration and speciation of heavy elements in soils and plants around Ijo porphyry copper mine (NW Share-Babak, Kerman province)

O. Asadi Karam¹ and A. Qishlaqi ²*

¹, ²- Faculty of Earth sciences, Shahrood University of Technology, Shahrood
qishlaqi@shahroodut.ac.ir

Recieved: 2018/7/28 Accepted: 2018/12/19

Abstract
Heavy metal concentration and speciation in soils and native plants around the Ijo copper mine (Kerman province) are investigated in the present study. For this purpose, 34 soil samples (0-40 cm in depth) and 8 native plants (Artemisia sp.) are collected and analyzed by means of standard methods. In addition, chemical forms of heavy metals are determined by Tessier five-stage extraction procedure. The results obtained indicated that Cu (457.25 mg/kg on average) in potassic alteration zone and As, Pb and Zn in argillic (47.06, 137 and 580 mg/kg on average, respectively) have the highest concentrations. The calculated enrichment factor (EF) and geo accumulation indices (Igeo) also confirmed this distribution pattern. The results of sequential extraction method indicated that all the metal studied have relatively low proportion in the exchangeable fraction (F1, 1/89 % of their total contents) and high contribution in the residual fraction (79/70 % of total contents) implicating their main geogenic sources in the soils. Levels of heavy metal in Artemisia and based upon the calculated biogeochemical indices (Transfer factor-TF and Bioconcentration factor-BCF), it was revealed that Zn and Cr (Mn as well) have the highest and lowest transfer factors, respectively. Also, the highest BCF are calculated for Mo, Cd and Cu. This study generally concludes that although the metals in soils are inherited mainly from the natural or lithogenic source in the study area, intensive exploitation and mining activities might enhance the soil metal contamination rate and make metals more available that it should be considered in future assessments.

Keywords: Ijo copper mine, Soil contamination, Speciation, Heavy elements, Artemisia sp